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TECHNICAL ABSTRACTS

LASER BASED MULTI-PARAMETER MEASUREMENTS IN DENSE AUTOMOTIVE DIRECT INJECTION SPRAYS
G. Grunefeld and S. Kruger, University of Bielefeld, Faculty of Physics, Postfach 100131, 33501 Bielefeld,
Germany, T. Muller and V. Beushausen, Laser-Laboratorium Goettingen e.V., Hans-Adolf-Krebs-Weg 1,
37077 Goettingen, Germany, and W. Hentschel, Volkswagen AG, Forschung & Entwicklung, EZMM 1785,
D-38436 Wolfsburg, Germany (Presented as a Work-in-Progress Poster at the 28th International
Symposium on Combustion, Held in Edinburgh, Scotland, August 2000).

It is demonstrated in this work that multiple scalar and vector quantities can be measured in dense
sprays from automotive swirl injectors by advanced laser diagnostic techniques. Such injectors are
currently being developed for gasoline direct injection engines. Measurements are generally difficult in
these dense sprays using conventional techniques, such as Phase Doppler Anemometry and Particle
Image Velocimetry, because of the high number densities of droplets, the optical thickness of the
medium and multiple light scattering effects. Thus, we developed a number of new measurement
techniques to overcome these problems. Specifically, we did 2-D velocity measurements by laser-based
flow tagging, 1-D droplet temperature measurements by spontaneous Raman scattering, and 1-D droplet
diameter measurements by Raman/Mie combination. Initial measurements have been done in swirling
sprays provided by Volkswagen AG, Wolfsburg, and Robert Bosch GmbH, Stuttgart, Germany. Velocity
measurements by laser based flow tagging is performed as follows: The gas (or liquid) phase is tagged
on a number of tag lines (‘write' laser grid) by inducing either photodissociation or phosphorescence.
The tracer molecules are convected with the flow and probed after a certain delay. The instantaneous
velocity field is determined from the two images by time-of-flight analysis using an optical flow
algorithm.
The temperature measurement technique is based on the shape and spectral position of the OH
stretching Raman scattering band, which can be recorded in alcohol sprays. The accuracy achieved in
this way is about ±2 °C. These measurements are performed by using a spatially resolving optical
multichannel analyzer as the detector. Thus, several other vibrational Raman lines and elastic
scattering can be recorded simultaneously. This yields the possibility to obtain additional spatially
resolved information, for example, air/fuel ratio, vapor/liquid mass fraction, or gas temperature
simultaneously. In particular, it is demonstrated that the Sauter mean diameter can be measured in
dense evaporating alcohol sprays by exploiting Mie scattering and the Raman scattering line from the
liquid phase.
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IGNITION TIME CORRELATIONS FOR n-HEPTANE/O2 /AR MIXTURES: A PARAMETRIC STUDY OF
EXPERIMENTAL DATA AND KINETIC MODELING
D.C. Horning, D.F. Davidson and R.K. Hanson, Mechanical Engineering Department, Stanford University,
Stanford, CA 94305 (Presented as a Work-in-Progress Poster at the 28th International Symposium on
Combustion, Held in Edinburgh, Scotland, August 2000).

Ignition time measurements of n-heptane/O2 /Ar mixtures have been studied behind reflected shock
waves over the temperature range of 1300-1700 K and pressure range of 1-6 atm; the mixture
composition was varied from 0.2-1.8% n-heptane, with an equivalence ratio of 0.5-2.0. To more
precisely determine the fuel mole fraction of the test mixture, a new technique has been employed in
place of the more traditional manometric method. This technique utilizes a 3.39 µm HeNe laser and
multiple-pass set-up to measure in-situ laser absorption of the fuel, resulting in a reduction of the fuel
mole fraction uncertainty. The ignition time was defined as the time interval between the arrival and
reflection of the incident shock at the endwall and the rapid rise of the CH emission signal recorded at
that location. Sidewall pressure and CH emission traces were also recorded to more accurately model
the combustion wave behavior behind the reflected shock.
The combustion chemistry is simulated using three detailed kinetic mechanisms: Held et al. (1997),
Lindstedt and Maurice (1995), and Curan et al. (1998). A parametric study, conducted with all three
models and the experimental data, suggests correlating the ignition time as a function of the
equivalence ratio, oxygen mole fraction, and reflected pressure and temperature. The experimental
data are correlated as follows:

τ(s) = 4.50x10−12XO2
−0.63φ0.85P−0.55exp(46,000/RT)

where XO2 is the oxygen mol fraction, φ is the equivalence ratio, P is the total pressure in atm, and the
activation energy is expressed in cal/mol. To enable comparison to the other work, the data for the
present study have also been correlated in the more traditional form:

τ(s) = 4.37x10−14 [n-heptane]0.84[O2]
−1.42exp(46,400/RT)

where the concentration of fuel and oxygen are expressed as moles/cm3.
The kinetic models of Lindstedt and Maurice, and Curran et al. were found to reasonably predict the
present ignition time measurements; the model of Held et al. was found to overpredict a majority of the
current data. All three models closely predict the experimentally determined pressure dependence, but only
the model of Curan et al. closely predicted the experimentally determined temperature dependence.
Furthermore, the models of Lindstedt and Maurice and Curran et al. predict nominally the same oxygen
mole fraction and equivalence ratio scaling as found experimentally.
The current data compares well in absolute magnitude with the previous shock tube work of Burcat et al.
(1981), Vermeer et al. (1972) and Colket and Spadacinni (1999). It predicts an activation energy essentially
identical to that of Vermeer et al., 15% higher than Colket and Spadacinni, and nominally 30% higher than
that found by Burcat et al. The pressure dependence of the current study (n= -0.55) falls between the values
determined by Burcat et al. (-0.3) and Vermeer et al. (-0.86) and Colket and Spadacinni (-0.8).

DECANE OXIDATION IN A SHOCK TUBE
A. Burcat and E. Olchanski, Faculty of Aerospace Engineering, Technion I.I.T., Haifa 32000, Israel
(Presented as a Work-in-Progress Poster at the 28th International Symposium on Combustion, Held in
Edinburgh, Scotland, August 2000).

Normal Decane, C10H22 , is one of the most obvious ingredients of diesel fuel. It was also defined as one
of three ingredients (the others being methyl naphthalene and normal heptane) that their blend should
be used to simulate diesel fuel. Since there are experimental results for simulating gasoline and
kerosene combustion, the attention is now devoted to diesel fuel. The oxidation of decane is
investigated by measuring the ignition delay of n-decane oxygen argon blends, in a single pulse shock
tube. Due to the low vapor pressure of n-decane, the shock tube had to be heated to 100 °C in order to
increase its concentration in the gas phase. Mixtures of 0.5 to 1.5% decane, and 2.3 to 4.2% oxygen
diluted in argon, were used at pressures between 1.8 to 9.4 atm.
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The overall ignition delay of decane based on a s=2 spread of 144 experiments is:
τ(s) = 10(±0.2)−12exp(+34,240/RT) [C10H22]0.60±0.06[O2]

−1.30±0.04[Ar]0.08±0.05

The overall ignition delay of decane based on a s=3 spread of 168 experiments is:
τ(s) = 10(±0.4)−11.9exp(+34,600/RT) [C10H22]0.66±0.09[O2]

−1.33±0.06[Ar]0.06±0.07

Post shock and preignition samples of gas were gathered and analyzed for products in a gas
chromatograph. The post shock products detected were: CO2 , CH4 , C2H4 , C2H6 , C3H6 , C4H6 , 1-C4H8 ,
1-C5H10 , 1-C6H12 , 1-C7H14 and 1-C8H16 . No higher products than C8 were detected except for decane
itself. Kinetic modeling is being performed and the results for the lower hydrocarbons up to hexane are
satisfactory. The research is being continued.

EFFECTS OF A UNIFORM MAGNETIC FIELD ON THE COMBUSTION AND EMISSION CHARACTERISTICS OF
PREMIXED LAMINAR FLAMES
Y. Izutani, M. Uchihata and Y. Hjura, School of Science & Engineering, Kinki University (Presented as a
Work-in-Progress Poster at the 28th International Symposium on Combustion, Held in Edinburgh,
Scotland, August 2000).

The effects of an electric field on a flame or combustion process has almost been elucidated regardless
of the field property; either uniform or nonuniform, steady or unsteady. The direct effects of a
magnetic field, however, are not known yet, although some indirect effects of a nonuniform magnetic
field have been reported by several investigators. We tackled this problem using a super-conducting
magnet and encountered considerable difficulties as follows. (1) The indirect effects easily surpassed
the direct ones because no magnetic field uniform enough was attainable if we used a magnetic coil.
This fact restricted the precision of experimental data in spite of our effort. (2) Optical and intrusive
measurements were very difficult because the object flame was located in a long and slender
nontransparent vertical tube of 51 mm i.d. and 500 mm long.
The magnetic flux density falls by a few percent from the axis to the tube wall. Oxygen, a gas having
rather strong magnetism, on the other hand, is consumed in the flame zone and produces a
concentration gradient in the radial direction. Both gradients interact with each other and generate an
inward secondary flow. This secondary flow accelerates the central stream upwards and decelerates the
peripheral one.
A Bunsen type propane/air premixed laminar flame was formed within the vertical tube placed at the
center of a super-conducting magnet generating a nearly-uniform upward magnetic field of 5 T. It was
observed how the magnetic field affected the flame stability limit equivalence ratio, flame contour,
burning velocity and the distribution patterns of gasification temperature and nitrogen oxides (NO and
NO2) concentration in and around the flame. It was found that the temperature and burning velocity of
a flame, which were dominated by high-speed chemical reactions, were not affected by a magnetic field
as intense as 5 T within the precision of the present experiment. Meanwhile, it appeared that the
magnetic field had a slight retardation effect on the process of nitrogen oxide formation dominated by
low-speed chemical reactions. If, however, the above-mentioned acceleration of the central stream by
the secondary flow were taken into account, this apparent retardation effect should significantly be
discounted, because the flow acceleration should result in a reduced reaction period until reaching a
fixed point around the axis.

BURNING VELOCITY MEASUREMENTS AND CALCULATIONS OF METHANE/PROPANE MIXTURES
K.J. Bosschaart and L.P.H. de Goey, Eindhoven University of Technology, Faculty of Mechanical
Engineering, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (Presented as a Work-in-Progress
Poster at the 28th International Symposium on Combustion, Held in Edinburgh, Scotland, August 2000).

In this work, measurements of the adiabatic burning velocity in a flat flame are presented. The burner
used in this work provides a flat, stretchless flame, which is effectively made adiabatic. This is achieved
by tuning the stabilizing heat loss of the flame to compensate for the heat gain from the unburnt gases
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as they pass the burner plate. The heat flux balance is monitored by measuring the temperature
distribution of the burner plate with thermocouples.
Methane/propane mixtures are investigated in various compositions, ranging from pure methane to
pure propane, with an equivalence ratio from 0.6 to 1.4. To compare the experimental results with
numerical simulations, calculations are performed; one set of calculations is carried out using the GRI
2.11 reaction mechanism. Another set is carried out with a Warnatz mechanism, which includes a C4
chain. To be able to use the GRI 2.11 mechanism for propane flames, it has been extended with the C3
branch of the Warnatz mechanism. The flames are calculated as free flames, without interaction to the
burner.
The results show that there is good agreement for the measured methane burning velocities with the
calculations based on the GRI 2.11 mechanism. However, the calculations based on the Warnatz
mechanism appear to be significantly higher, up to 5 cm/s. For propane, both simulations show higher
burning velocities than the measurement results.
For methane/propane mixtures, both GRI 2.11 and Warnatz based calculations show the same tendency:
the propane content increases the burning velocity. The influence is considerably larger in mixtures
having a methane fraction above 50%, as compared to mixtures approaching 100% propane. The same
tendency is seen in the measurements.

ION MOLECULE CHEMISTRY AT TEMPERATURES UP TO 1800 K
A.A. Viggiano, Space Vehicles Directorate, Air Force Research Laboratory, 29 Randolph Rd., Hanscom Air
Force Base, MA 01731, Fax (781) 377-7091, viggiano@plh.af.mil (Presented at the 220th National Meeting
of the American Chemical Society, Held in Washington DC, August 2000).

While most ion molecule chemistry has been measured at or near room temperature and below, high
temperature plasmas occur in the ionosphere, combustion, plasma reactors, and plasmas associated
with atmospheric reentry and hypersonic flight. For these reasons, we have developed a flowing
afterglow capable of measuring both rate constants and branching ratios at temperatures up to 1800 K.
Additional information can be obtained from the temperature dependence data by comparing the high
temperature data to drift tube data. This yields information on how internal energy affects reactivity.
We have found rotational and translational energy often control reactivity similarly and that
vibrational energy often has a more pronounced influence on reactivity than does translational energy
or rotational energy. A good example is the reaction of O2

+ with CH4 . The rate constant for this
reaction increases dramatically at high temperature and 50% of the products are not observed at low
temperature or elevated translation energy showing that CH4 vibrational excitation enhances overall
reactivity in part by opening new channels, i.e. state specific chemistry. Even in larger systems we have
found that internal and translational energy behave differently. For example, we have observed in the
charge transfer reactions of NO+ and O2

+ with alkylbenzenes that electronic and internal energy is
more efficient at promoting dissociation than is translational energy. This chemistry along with other
representative examples will be presented.

NEW INSTRUMENT FOR MEASURING ION-MOLECULE KINETICS AT ELEVATED PRESSURES: THE
TURBULENT ION FLOW TUBE
S. Arnold and A.A. Viggiano, Space Vehicles Directorate, Air Force Research Laboratory, 29 Randolph Rd.,
Hanscom Air Force Base, MA 01731, Fax (781) 377-1148, and J.V. Seeley, Department of Chemistry,
Oakland University (Presented at the 220th National Meeting of the American Chemical Society, Held in
Washington DC, August 2000).

Ion molecule kinetics have traditionally been measured at pressures of 10 torr or less with a few
exceptions. The few studies at high pressure have found interesting new processes. We present the first
data taken on a new instrument for studying ion kinetics at pressures from 20-750 torr. The turbulent
ion flow tube is based on the similar neutral apparatus from Seeley and Molina. Ions are created
upstream from a radioactive ion source. A fast flow of carrier gas transports the ions downstream and
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measurements are made in the normal manner for a flow tube experiment. An upgrade in progress will
allow temperature variability and operation at pressures up to 2 atm. The first system studied was the
reaction of SF6

− with SO2 . The rate constant was rapid and constant throughout the pressure range and
three products were formed, SF5

−, FSO2
− and F2SO2

−. Within uncertainty, the branching ratio was also
independent of pressure. The reactions of SF6

− with three solvent molecules, H2O, CH3OH, and
C2H5OH, were also studied. These reactions are considerably more complex. The decline in the SF6

−

signal is second order in the concentration of reactant. In all cases, the reaction proceeds through a
cluster ion between SF6 and the solvent, SF6

−(X). The equilibrium measurements indicate a −∆G=4-5
kcal/mole. SF6

−(X) in turn reacts with another solvent molecule producing two product ions. The rate
for this process is slow, with rate constants on the order of 10−14 cm3 s−1. In the H2O reaction, SF4O

− and
F−(HF)2 were formed. In the alcohol reactions F−(HF) and F−(HF)2 were formed. The product ions are
further solvated by the reactant neutral. Slow solvent switching of the second HF in F−(HF)2 is also
observed with the alcohols.

A NEW METHOD TO MINIMIZE HIGH TEMPERATURE CORROSION RESULTING FROM ALKALI SULFATE AND
CHLORIDE FLAME DEPOSITION
K. Schofield, Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (Presented
as a Work-in-Progress Poster at the 28th International Symposium on Combustion, Held in Edinburgh,
Scotland, August 2000).

Based on an earlier understanding of the parameters that control flame generated deposition of Na2SO4

or NaCl onto cooled surfaces immersed in a flame, a new process† has been developed to inhibit their
formation. It is seen that no alkali sulfate is formed if tungsten salts are added to a flame containing an
alkali (sodium or potassium), sulfur and chlorine, when the tungsten-to-alkali ratio is larger than
about 2-fold on an atomic basis for sodium and possibly a little higher (4-fold) for potassium. Instead,
the alkali exhibits a greater affinity for the tungsten and benign alkali tungstates are deposited. This is
further confirmed in experiments in which an Na2SO4 deposit is initially formed on a probe and then is
seen to be fully converted by the addition of sufficient tungsten and overlaid by a similar tungstate
growth. Deposition appears to closely reflect the relative thermodynamic stabilities of these salts and
follows the order Na2WO4>Na2SO4>NaCl>Na2CO3 . Conversions can occur in the direction of greater
stability but are irreversible. The method appears to be insensitive to fuel, equivalence ratio or general
flame parameters. Deposits have been acquired on stainless steel and platinum clad probes operating in
the temperature range 600 to 900 K. Analysis has utilized Fourier transform Raman spectroscopy and
Inductively Coupled Plasma Atomic Emission. An analysis also has been completed of other potential
additives that might act similarly in preferentially binding the alkali. Indicates are that only niobium
and tantalum are possibilities but are not as attractive commercially. A preliminary examination of
potential interferences has been made. This concerns whether any other element might have a greater
affinity for the tungsten over that of the alkali. Calcium, strontium and barium appeared to fall in this
potential category having well defined tungstates. However, thermodynamic calculations and
preliminary experiments indicate that these still favor sulfate formation and do not tie up any of the
available tungsten in the system.
This process has been patented with the U.S. Patent Office, Serial No. 09/505,007, February 15, 2000,
University of California, Oakland, CA.

PAHS FORMATION IN PREMIXED FLAMES OF GASEOUS FUELS: AN EXPERIMENTAL STUDY
R. Wilk, A. Ksiedz and A. Szlek, Institute of Thermal Technology, Silesian University of Technology,
Gliwice, Poland (Presented as a Work-in-Progress Poster at the 28th International Symposium on
Combustion, Held in Edinburgh, Scotland, August 2000).

Polycyclic aromatic hydrocarbons (PAHs) belong to the most toxic substances emitted to the atmosphere
from anthropogenic sources. The exact mechanisms of formation of this group of compounds are not well
understood. The goal of the experimental measurements was to determine the axial concentrations of
selected PAHs in laboratory scale atmospheric pressure methane/air and methane/toluene/air flames for
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various fuel/air ratios. In order to examine the influence of acetylene on PAHs formation the fuel was doped
with acetylene.
The experimental setup consists of three basic components − a mixture preparation system, a ceramic
combustion chamber with movable burner and a sampling system. Air-fuel mixture preparation system
consists of flow rotameters, reducing valves, mixer and transfer lines. Toluene was evaporated and mixed
with air. After combining the flows of CH4 , C2H2  C7H8 and air they were passed through a long line to
ensure good mixing. In order to obtain axial profiles of PAHs concentrations the burner was moved relative
to the stationary probe. Samples were obtained using a stainless steel water cooled probe. PAHs were caught
on an XAD-2 trap. Samples were extracted using a Soxhlet apparatus. Final separation, detection and
identification was realized by means of gas chromatography combined with a flame ionization detector
(GC-FID). The flame temperatures were measured by using PtRh10%-Pt thermocouple.
The selected PAHs axial concentration profiles and temperatures were measured in an atmospheric
pressure premixed CH4 /air and CH4 /C7H8 /air flames at the fuel equivalence ratios: φ=0.9-1.1. The
methane flow rate was about 0.12 mn

3/h. In the case of CH4 /C7H8 /air flame the toluene mol fraction
was 7% of the gas flow (about 25% of the thermal output). The methane was doped with toluene in
order to evaluate the influence of the presence of aromatic structure on formation and emission of
PAHs. Moreover, the measurements of selected PAHs concentrations at the distance of 100 mm from
burner mouth as a function of fuel/air ratio were performed. Gas/air mixture flow velocity in all cases
was at the level of 23 cm/s.
The axial concentrations profiles of selected PAHs in studied flames indicated that PAHs are formed
rapidly at the beginning of the flame, then their concentrations decrease. In some cases concentration
of selected PAHs further increase downstream. The final PAHs concentrations in CH4 flames doped with
toluene (aromatic structure) are higher than those in CH4 flames especially at φ>1.1 (rich mixture).
Also addition of acetylene produces much higher PAHs concentrations - it confirms the significant role
of acetylene in the processes of PAHs formation.
The effect of the fuel/air ratio on the final concentrations of PAHs in both (CH4 /air and CH4 /C7H8 /air)
flames was studied as well. The PAHs reach their minimum concentrations at φ=1.05 and their
concentrations increase with increasing or decreasing of φ. This dependence is a result of flame
temperature, local oxygen concentration and residence time.
Further investigations of the influence of other parameters of the combustion process (fuel and oxidizer
composition, excess air ratio) on PAHs concentrations profiles are planned. The semiempirical model of
PAHs formation and destruction will be constructed on the basis of the experimental measurements. The
model will permit an evaluation of the levels of emissions of PAHs from gas-fired combustion devices.

PESTICIDE WASTE INCINERATION IN THE WET PROCESS CEMENT KILN
M. Mazur, R. Oleniacz and M. Bogacki, Department of Management and Protection of Environment, and
S.S. Slupek, Department of Heat Engineering and Environmental Protection, University of Mining and
Metallurgy, Cracow, Poland (Presented as a Work-in-Progress Poster at the 28th International Symposium
on Combustion, Held in Edinburgh, Scotland, August 2000).

Pesticide wastes (agricultural chemicals which exceeded a prescribed time limit) that have been
accumulated underground in concrete graveyards or bunkers, now present a significant problem in
Poland. They are scattered around the whole country. Their progressive unsealing poses a significant
health risk to people due to groundwater, soil and air pollution. Incineration in professional hazardous
waste incineration plants is one of methods used for disposal of pesticide wastes. There are not many
incineration plants in Poland as compared to working cement plants whose number amounts to 18.
Most of them are interested in utilization of various wastes (for example in the capacity of alternative
fuels) in the process connected with the cement clinker production in rotary kilns. High temperatures
existing in cement kilns(1370-1450 °C in the burning zone) as well as long gas-residence time (5-10 s)
provide potentially excellent destruction conditions of wastes including hazardous wastes. According to
the analysis of thermodynamic and technological conditions, the wet process kiln is best suited for the
purpose.
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The method of pesticide waste wet process cement kiln incineration has been worked out that allows to
select such conditions for the process that do not have negative impact on the level of the air pollution,
the quality of clinker and technological facilities durability. Analysis of most agricultural chemicals
used in the past taking into consideration the type and the quantity of biologically active chemicals in
these preparations, indicate that various pesticide wastes can include, for instance, up to 50% Cl, 80%
S, 30% Cu, 15% Zn and 2.5% Hg (by weight). Copper and zinc are almost completely retained in the
solid phase and built into the clinker like other probable components of the wastes that are neutral to
the process (for example, Ca, Na, Mn and P). Chlorine and sulfur given off from the wastes in the form
of HCl and SO2 are absorbed by alkaline solid phase (CaO, Na2O and K2O) resulting in chlorides,
sulfates or sulfites, and the efficiency of the reactions considerably increase outside the kiln (in lower
temperatures). The major problem is caused by mercury vapors that can only partly condense on the
fly ash surface and can be removed from flue gas with the aid of a dust collector.
According to analyses carried out for a standard wet process kiln, the most crucial parameters for the
method are doses of Cl (for the sake of the process course and cement quality) and Hg (for the sake of
emission to the air). Total chlorine input cannot exceed 0.16% with reference to the clinker mass. In
most cases quantity of mercury inserted into the kiln (safe for air quality round the kiln chimney)
cannot exceed 0.5-1.0 kg/h and should be divided into single doses as small as possible.
The analysis of possibility of pesticide waste thermal utilization in cement rotary kiln furnace were
carried out for about 200 different kinds of pesticides collected in graveyard. For some pesticides it was
possible to determine chemical constitution and their combustion enthalpy. For the other ones
combustion enthalpy has been assumed by comparison to similar compounds. Thus, it was estimated
that agriculture pesticide wastes can be treated as fuel with average calorific value about 2500 kJ/kg.

A POSSIBLE NEW ROUTE FORMING NO VIA N2H3

A.A. Konnov and J. De Ruyck, Department of Mechanical Engineering, Vrije Universiteit Brussel, 1050
Brussels, Belgium (Presented as a Work-in-Progress Poster at the 28th International Symposium on
Combustion, Held in Edinburgh, Scotland, August 2000).

A possible new route for NO formation in hydrogen combustion is explored. It is suggested that nitric
oxide can be produced from N2 via N2H3 in rich hydrogen/air mixtures at relatively low temperatures
when other routes of NO formation are suppressed. The reaction sequence that converts molecular
nitrogen into nitrogen oxides starts by the formation of NNH radicals

N2 + H = NNH (1)
N2 + H + M = NNH + M (2)

Fast recombination of the NNH radicals with H atoms leads to the formation of N2H2

NNH + H + M = N2H2 + M (3)
and subsequently to the formation of N2H3

N2H2 + H + M = N2H3 + M (4).
N-N bond cleavage occurs in the reaction of N2H3 with H2 forming NH3 and NH2

N2H3 + H2 = NH3 + NH2 (5)
thus this possible new mechanism of the NO formation is identified as N2H3-route. NH3 and NH2 are
oxidized mainly in the sequence NH3→NH2→NH→N→NO.
To clarify a role of the new possible route forming NO via N2H3 , the combustion of hydrogen and air
mixtures in well-stirred reactors is modeled employing an updated detailed H/N/O reaction mechanism
or the same mechanism, but without N2H3 pathway. The detailed H/N/O mechanism used in the
present study consists of 238 reversible reactions among 31 species. To suppress the N2H3-route of NO
formation the rate constant of the recombination reaction (4) has been set to zero. The formation of
nitric oxide is calculated and analyzed as a function of the mixture temperature, residence time,
stoichiometry, and pressure in the reactor.
Key reactions of the N2H3 formation and consumption as well as other important reactions revealed by
sensitivity analysis and reaction path are examined and discussed. Kinetic modeling of hydrogen
combustion in stirred reactors demonstrates that with the currently adopted rate constants this
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mechanism is of major importance in rich hydrogen/air mixtures burning in stirred reactor between
1000 and 1400 K at pressures between 0.5 and 8 atm. The possibility of its existence and its relative
importance are based on the correct evaluation of the rate constants of the key most sensitive reactions
(3), (4), and

N2H2 + H = NNH + H2 (6).
The choice of the rate constants of these reactions is discussed.
Available measurements of NO formation in hydrogen combustion in stirred reactors have been
modeled and analyzed. They neither confirm nor contradict this novel route forming NO via N2H3 ,
because these experiments have been conducted outside the range of conditions where this route is
manifested.

NO REBURNING IN FUEL-RICH LOW PRESSURE PROPENE FLAMES: EXPERIMENT AND MODELING
A.T. Hartlieb and B. Atakan, Universitat Beilefeld, Fakultat fur Chemie, Physikalische Chemie I,
Universitatsstr. 25, D-33615 Bielefeld, Germany (Presented as a Work-in-Progress Poster at the 28th
International Symposium on Combustion, Held in Edinburgh, Scotland, August 2000).

Three fuel-rich, non-sooting (Φ=1.5, 1.8, 2.3) laminar premixed propene flames doped with 1.0% and
0.1% NO at 50 mbar were investigated by laser induced fluorescence and analyzed with flame
calculations to contribute to the understanding of the reburn chemistry by using a C3 hydrocarbon fuel
in extension of most previous studies, which were restricted to C1- and C2-hydrocarbons as fuels.
Temperature was measured by laser induced fluorescence of seeded NO. This technique was also
applied to determine absolute NO concentrations. NO mole fractions in the exhaust were found to be
reduced to 45, 20 and 10% of the initial doping level for Φ=1.5, 1.8, and 2.3, respectively. Flame
calculations were performed using three different kinetic models for the NOx chemistry, namely
mechanisms of Konnov, of Miller and Melius, and the GRI 2.11 mechanism. All models predict the NO
concentration profiles reasonably well for these stoichiometries. Differences between the model
predictions are noted for the HCN and N2 concentrations, especially for the flame with Φ=2.3.
Reaction flow analysis with respect to NO reveals the importance of NO consumption by HCCO under
these conditions, whereas consumption by CHi radicals is of minor influence. However, differences in
product distributions and reaction rates of some important reactions are found between the models,
especially for reactions of CH2+NO and for HCCO+NO. Differences are also observed in the formation
and consumption channels of HCN leading to different product distributions.

EXPERIMENTAL EVALUATION OF CORONA DISCHARGE REACTOR FOR REMOVAL OF SOOT PARTICLES AND
NOX IN DIESEL ENGINE EXHAUST
T. Morimune and K. Linoshita, Shonan Institute of Technology, 1-1-25, Tsujidoh Nishikaigan, Fujisawa,
Japan (Presented as a Work-in-Progress Poster at the 28th International Symposium on Combustion, Held
in Edinburgh, Scotland, August 2000).

We have experimentally evaluated the application of a corona discharge reactor apparatus to reduce the
concentrations of diesel soot particles and NOx in the exhaust gas of a conventional diesel engine. The
exhaust gas is treated by passing through a corona discharge collector for diesel soot particles (CCDS)
and a corona reactor for NOx removal (CBNR) in a high voltage electric field. The CCDS is designed to
collect soot particles electrically on a central electrode and accumulated soot is removed by a
regeneration technique. In a corona reactor CRNR, the NO is oxidized to NO2 and reacts with H2O
contained in the gas, NOx decreases as a results of HNO3 formation. In our study the effects of corona
voltage, current, and inlet temperature on the exhaust gas on the soot removal rate and the NOx

removal rate are considered. In addition, a prototype reactor, which couples CCDS with CRNR for soot
and NOx removal, is proposed in this study. We found that (i) the soot removal rate of 70-90% is
obtained at corona input power of 3 W (15 kV) to 8 W (23 kv).  (ii) the central electrode of the CCDS can
be regenerated by controlled burning process. (iii) NOx removal rate of 95% was observed at an input
power of 80 W.
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MODELING OF SOOT IN TURBULENT DIFFUSION FLAMES OF METHANE
R.N. Kleiveland, I.R. Gran and B.F. Magnussen, Department of Applied Mechanics, Thermodynamics and
Fluid Mechanics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
(Presented as a Work-in-Progress Poster at the 28th International Symposium on Combustion, Held in
Edinburgh, Scotland, August 2000).

The aim of this work is to test several soot models together with a detailed simulation of a turbulent
diffusion flame. Predicting soot in turbulent flames is a highly challenging task. Nevertheless, it is an
important task as we know that most industrial combustion processes are turbulent. A thorough
understanding of the soot formation process as well as the ability to model this process is necessary to
develop more efficient and cleaner combustion equipment.
This work presents results from numerical simulations of a turbulent diffusion flame of methane. The
predictions are validated against experimental data provided by Brookes and Moss. The simulations
include coupled models for turbulence, combustion, radiation, and soot. All simulations are performed
with a general-purpose CFD code which has been developed at our department over the last two
decades. The interaction of turbulence and chemical reactions is modeled by the Eddy Dissipation
Concept (EDC) developed by Magnussen and co-workers. EDC is based on the assumption that the
chemical reactions occur in the regions where the dissipation of turbulence energy takes place. The EDC
combustion model is used in conjunction with the complete GRI-Mech 3.0 reaction mechanism. When
modeling soot formation and oxidation, predicting the correct flame temperature is of crucial
importance. To ensure a satisfactory representation of the flame temperature, a radiation model is
implemented in the program.
Three different soot models are used in the simulations, the original EDC soot model proposed by
Magnussen, a more detailed soot model developed by Lindstedt and co-workers, and a modified EDC
soot model. Results from simulations with the three different soot models are discussed and compared
with experimental data.

DATA FOR THE SOOT MODEL VALIDATION: LII AND SHIFTED VIBRATIONAL CARS MEASUREMENTS
K.P. Geigle, Y. Schneider-Kuhnle and W. Stricker, Deutsches Zentrum fur Luft- and Raumfahrt (DLR),
Institut fur Verbrennungstechnik, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany (Presented as a
Work-in-Progress Poster at the 28th International Symposium on Combustion, Held in Edinburgh,
Scotland, August 2000).

The reduction of pollutants in technical combustion systems is an important challenge for the design of
new combustion systems. In the past the focus has been on gaseous species like NOx . Now increasing
efforts are aiming at the processes contributing to soot formation and oxidation. There are two main
approaches towards a comprehensive understanding of these reactions: the experimental determination
of physical properties in sooting flames and theoretical modeling of the underlying chemical processes.
For the development of the soot model a validation by experimental data in simplified combustion
systems is necessary. An extensive pool of validation data is desirable that contains different
equivalence ratios, pressures and fuels. Besides the measurement of soot volume fractions, a precise
temperature determination is important for the model validation since it has a strong influence on the
gas phase precursor chemistry of soot formation.
For the validation of the soot model, well defined experimental boundary conditions of the flame under
study are necessary. By a new burner design, we were able to separate soot growth and oxidation by
preventing the entrainment of secondary air into the soot region of the flame. The investigated flame is
surrounded by a coflame of equivalence ratio Φ=1. Thus the inner sooting flame is shielded to the
outside by a hot gas film.
First results are presented for a laminar premixed ethene/air flame at different equivalence ratios in
the range of 2<Φ<3 for pressures up to 0.4 Mpa. Soot volume fractions are measured by 2-D Laser
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Induced Incandescence (LII), excited by a lasersheet at 532 nm. Calibration of the LII signal is obtained
by simultaneous dual beam extinction measurements with a HeNe laser.
N2 vibrational CARS spectroscopy is an established technique for temperature measurements in flames.
In conventional vibrational N2 CARS, using the frequency-doubled output of the Nd:YAG at 532 nm as
the pump and a dye laser as the broadband Stokes source, the method becomes very difficult as soon as
the soot concentration within the flame rises. Under these conditions the C2 Swan band at 473 nm
interferes and disturbs the N2 signal spectra. By modifying the conventional excitation scheme and
using a narrowband dye laser instead of the 532 nm of the Nd:YAG laser, we were able to shift the CARS
spectrum to lower wavenumbers out of this C2 Swan band interference. First measurements
demonstrate the improved access of sooting flames for temperature determination by shifted
vibrational CARS spectroscopy (SV-CARS).

COMPUTATIONAL AND EXPERIMENTAL STUDIES OF SMALL AROMATIC RADICAL REACTIONS OF RELEVANCE
TO INCIPIENT SOOT FORMATION
M.C. Lin, J. Park, G.J. Nam, I.V. Tokmakov and Y.M. Choi, Department of Chemistry, Emory University,
1515 Pierce Drive, Atlanta, GA 30322, Fax (404) 727-6586, e-mail: chemmcl@emory.edu (Presented at the
220th National Meeting of the American Chemical Society, Held in Washington DC, August 2000).

Small aromatic radicals, such as phenyl and napthyl, have been shown by kinetic modeling of soot
formation to be key reactive species responsible for the formation of polycyclic aromatic hydrocarbons,
precursors to soot. In an attempt to establish a kinetic database for these small aryl radical reactions,
in the past several years we have measured the rate constants for C6H5 reactions with a number of
hydrocarbons and combustion species using different complementary spectroscopic techniques. We have
also carried out quantum chemical calculations (by ab initio MO up to 8 heavy atoms and by hybrid DFT
for larger systems) to elucidate their reaction mechanisms as well as to interpret the measured rate
constants using TST or RRKM theory.

LASER INDUCED INCANDESCENCE MEASUREMENTS IN TURBULENT ETHYLENE DIFFUSION FLAMES
R.L. Vander Wal and M.W. Millard, NCMR c/o NASA-Glenn Research Center, M.S. 110-3, 21000 Brookpark
Road, Cleveland, OH 44135, (216) 433-9065, e-mail: randy@rvander.grc.nasa.gov;
michael.millard@grc.nasa.gov (Presented as a Work-in-Progress Poster at the 28th International
Symposium on Combustion, Held in Edinburgh, Scotland, August 2000).

Instantaneous, spatially-resolved measurements of soot within turbulent diffusion flames is necessary
for model development and testing. In the paper presented here, experimental results are shown using
laser induced incandescence for quantified soot volume fraction measurements within turbulent
ethylene/air diffusion flames.
Two-dimensional LII images reveal a dramatic increase in soot volume fraction (fv) with increasing O2

ambient concentration. With increased fv , the spatial extent of soot containing regions also increases,
resulting in a decrease in the soot intermittency. This trend is borne out by plots of the spatially
integrated soot intermittency. Radial profiles of fv reveal both an increase and contraction of the soot
containing region, consistent with the qualitative indications suggested by the LII images and C2

emission images. PDFs of fv quantify the fluctuation in this quantity and reflect the impact of shear
layer mixing upon soot processes.
These findings are consistent with the time-averaged flame location and its associated effect upon the
gas density and temperature into which the fuel-jet issues as determining the rate and extent of soot
inception and growth. Analogous to laminar diffusion flames, the reaction zone resides outside of the
fuel-rich region, beyond the shear layer., The results presented here illustrate that the proximity of the
reaction front to the shear layer induced turbulent mixing dramatically affects the soot loading, its
fluctuation and spatial distribution. Increasing the stoichiometric mixture fraction by increasing the O2

ambient concentration causes laminarization of the potential core. Yet the locally higher
concentrations of hot combustion products offsets the reduced shear layer mixing and accelerates soot
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inception and growth, yielding a higher fv . Finally, the radial variation in fv reflects the intermittency
and randomness in the turbulent mixing as measured by soot inception and growth.

KINETICS OF SOOT NANOPARTICLE OXIDATION
K.J. Higgins and J.T. Roberts, Department of Chemistry, University of Minnesota, 207 Pleasant Street SE,
Minneapolis, MN 55455, Fax (612) 626-7541, e-mail: higgins@chem.umn.edu, and H.J. Jung, D.B.
Kittelson and M.R. Zachariah, Department of Mechanical Engineering, University of Minnesota (Presented
at the 220th National Meeting of the American Chemical Society, Held in Washington DC, August 2000).

Soot emission from combustion sources is dictated by the competing surface processes of growth and
oxidation. We have developed a new experimental method to conduct surface chemistry and extract
surface kinetic rates from mobility-area selected soot particles generated in flames and internal
combustion engines. These mono-area particles are characterized for changes in surface area during a
controlled high temperature oxidation (or condensation) using on-line nanoparticle characterization
instrumentation. Quantitative kinetic information for surface oxidation rates can then be determined
by changes in surface area. This technique is being used to determine the rate of soot oxidation as a
function of temperature, particle size, and fuel type. We believe these to be the first measurements of
soot oxidation kinetics that have been conducted on mono-surface area particles. The results will be
used to evaluate existing kinetic models.

NUMERICAL SIMULATION OF THERMO-IONIZATION OF SOOT PARTICLES AND ITS EFFECT ON SOOT
GROWTH IN LAMINAR PREMIXED FLAMES
M. Balthasar and F. Mauss, Division of Combustion Physics, Lund University, 22100 Lund, Sweden, and
H. Wang, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 (Presented
as a Work-in-Progress Poster at the 28th International Symposium on Combustion, Held in Edinburgh,
Scotland, August 2000).

The effect of thermo-ionization on soot particle growth is analyzed by detailed kinetic modeling of low-
pressure premixed acetylene flames. The model considers fuel oxidation, formation and growth of
polycyclic aromatic hydrocarbons, and soot particle inception, coagulation, and heterogeneous surface
reactions.
In this work we investigate the production of charged particles by thermo-ionization as well as
coagulation and surface reactions of these particles. Neutral particles and particles carrying one
negative or positive charge are considered. The collision enhancement due to van der Waals, image and
electrostatic forces between the particles is rigorously accounted for in the numerical model. The
particle size distribution functions for both neutral and charged particles are calculated using the
method of moments. The model is validated using measurements of number densities and relative soot
volume fractions of charged and neutral particles in a low-pressure laminar premixed C2H2 /O2 flame.
The sensitivities on electron concentrations and heterogeneous surface reactions are studed in a
laminar premixed C2H2 /O2 /Ar flame. The results show that the omission of particle thermo-ionization
does not lead to significant errors in the simulation of soot formation in acetylene flames, as long as the
nature of the surface reactions between charged particles and gaseous molecules remains to be the
same as for neutral particles. This result can be generalized to most laboratory laminar premixed and
counterflow diffusion flames with flame temperature not exceeding 2100 K. Only if the surface reaction
between charged particles and gas molecules is enhanced should the thermo-ionization potentially play
a role in particle mass growth. Regardless, the uncertainty associated with the omission of thermo-
ionization is significantly smaller than the uncertainties in the kinetics of particle inception and surface
growth.
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PREDISSOCIATION IN THE HYDROCARBON FLAME BANDS OF HCO
M.R. Manaa, Chemistry and Materials Science, Lawrence Livermore National Laboratory, 7000 East
Avenue, P.O. Box 808, L-282, Livermore, CA 94551, Fax (925) 424-3281, e-mail: manaa1@llnl.gov
(Presented at the 220th National Meeting of the American Chemical Society, Held in Washington DC,
August 2000).

We use large-scale multiconfiguration self-consistent field/configuration interaction calculations to
characterize the predissociation mechanism of the B2A′ state of HCO through conical intersection with
the X2A′ ground state, the hydrocarbon flame band. We locate two regions of intersection: the first
represents a highly bent HCO that is 8 kcal/mol energetically lower than the B-state minimum, with a
barrier height of 26 kcal/mol. Energy points on the B2A′ potential surface connecting these extrema
were also calculated. This region emphatically illustrates the feasibility of a nonradiative decay
mechanism consistent with latest experimental findings of purely vibronic coupling mechanism. The
second region of intersection represents a confluence of three linear (2σ+-2π) states crossings,
53 kcal/mol below the B-state minimum. A barrier about 21 kcal/mol above the state equilibrium
structure is located and assigned to the entrance channel of H-CO(3π).

VINYL RADICAL: VISIBLE SPECTROSCOPY AND EXCITED STATE DYNAMICS
C.-H. Yang, M. Shahu and C.D. Pibel, Department of Chemistry, American University, 4400
Massachusetts Ave NW, Washington, DC 20016, Fax (202) 885-1752, e-mail: ivy1006@hotmail.com,
mshahu@usa.net, M. Bouadani, Department of Physics, American University, K.H. Patrick and J.B.
Halpern, Department of Chemistry, Howard University, and A. McIlroy and C.A. Taatjes, Combustion
Research Facility, Sandia National Laboratories (Presented at the 220th National Meeting of the American
Chemical Society, Held in Washington DC, August 2000).

The vinyl radical, C2H3(A2A″←X2A′) spectrum has been measured between 530 and 360 nm using cavity
ringdown spectroscopy. Optimal rotational constants and linewidths were determined for the first three
vibrational bands by modeling the spectrum as an asymmetric top. About 1200 cm−1 above the excited
state origin the model can no longer match the experimental spectra and linewidths become very broad,
signifying the appearance of new dynamics involving a non-planar isomer. Our best-fit results
combined with previously published ab initio calculations offer new information on the radical's
structure and unimolecular dynamics. The change in rotational constants and linewidths with
increasing vibrational excitation provides further insight into vinyl's geometric deformation and
unimolecular dissociation. Additional information on the dynamics in the excited and electronic state
of the vinyl radical has been obtained by studying the same transition in the perdeuterated isomer of
vinyl.

NH2(A2A1) RADIATIVE LIFETIMES
K.H. Patrick, M. He and J.B. Halpern, Department of Chemistry, Howard University, 525 College St. NW,
Washington, DC 20059, Fax (202) 806-5442 (Presented at the 220th National Meeting of the American
Chemical Society, Held in Washington DC, August 2000).

The NH2(A2A1-2B1) absorption involves an electronic transition from a linear ground state to a bent
excited state. This geometry change favors transitions to highly excited bending levels in the excited
state. Radiative lifetimes were measured for bands excited between 750 and 410 nm reaching as A2A1

levels as low as ν2=3 and as high as ν2=17. The results resolve a long standing disagreement between
experimental data in the literature. Radiative lifetimes range from 67 to 5 µs, decreasing with
increasing vibrational excitation. The variation of lifetime with vibrational level generally agree with
the predictions of Jungen, Hallin and Merer, however, there are significant deviations for the highest
and lowest vibrational levels.
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MECHANISM OF THE REACTION CH4+O(1D2)→CH3+OH, STUDIED BY ULTRAFAST AND STATE-RESOLVED
PHOTOLYSIS/PROBE SPECTROSCOPY OF THE CH4⋅O3 VAN DER WAALS COMPLEX
R.D. van Zee, C.C. Miller and J.C. Stephenson, National Institute of Standards and Technology, 100
Bureau Drive, Gaithesburg, MD 20899, Fax (301) 975-3845, e-mail: roger.vanzee@nist.gov (Presented at
the 220th National Meeting of the American Chemical Society, Held in Washington DC, August 2000).

The mechanism of the reaction CH4+O(1D2)→CH3+OH was investigated in state-resolved and time-
resolved experiments. Ultraviolet pulses photolyzed ozone in the CH4⋅O3 van der Waals complex to
produce O(1D2). The ensuing reaction with CH4 was monitored by laser induced fluorescence through
the OH(A←X) transition. In the state-resolved measurements, the distribution of OH(v=0,1;J) states,
Pobs(v,J) was determined using a tunable, high resolution laser. In the time-resolved measurements, an
ultrafast laser system was used to monitor the appearance of these OH states at probe wavelengths
centered between 307 and 316 nm. Because the ultrafast probe laser was spectrally broad, many
rovibrational states were probed simultaneously. At each probe wavelength, multiple appearance rates
were evident in the fluorescence signal, and the ratio of these components varied with probe
wavelength. These data are most consistently fit using a three-mechanism model. The OH appearance
signals, at all probe laser wavelengths, were best fit with time constants of τfast≈0.2 ps, τinter≈0.5 ps and
τslow≈5.4 ps. The slowest of these three is the rate predicted by statistical theory for dissociation of a
vibrationally excited methanol intermediate (CH3OH*) after complete intramolecular energy
redistribution following insertion of O(1D2) into CH4 . Under the assumption that the mechanism
producing OH at the statistical rate would be characterized by a statistical prior, Pobs(v,J), was
decomposed into three components, each with a linear surprisal. Dissociation of a CH4O* intermediate
before complete energy randomization was identified as producing OH at the intermediate rate and was
associated with a population distribution with more rovibrational energy than the slow mechanism.
The third mechanism produces OH promptly with a cold rovibrational distribution, indicative of a
colinear abstraction mechanism. From the decomposition of Pobs(v,J), it was possible to predict the
fraction of signal associated with each mechanism at each probe wavelength in the ultrafast
experiment, and the predictions proved consistent with measured appearance signals.

CAVITY RINGDOWN SPECTROSCOPY APPLIED TO AN ATMOSPHERIC PREMIXED FLAT FLAME FOR ABSOLUTE
SPECIES CONCENTRATIONS
R. Evertsen and J.J. ter Muelen, Applied Physics, University of Nijmegen, Toernooiveld 1, 6525 ED
Nijmegen, The Netherlands, and J.A., Van Oijen and L.P.H. de Goey, Faculty of Mechanical Engineering,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (Presented as a
Work-in-Progress Poster at the 28th International Symposium on Combustion, Held in Edinburgh,
Scotland, August 2000).

In order to gather insight into the reaction mechanisms of combustion processes, several laser diagnostic
techniques can be applied to determine absolute molecular densities in atmospheric flames. However,
many of these lack the required sensitivity of the quantitative data and are not sufficiently accurate.
Therefore, we have used Cavity Ringdown Spectroscopy (CRDS) to study a laminar flame under
different conditions at atmospheric pressure. In recent years the sensitivity of the method has also been
demonstrated in the area of combustion research, mainly on low pressure flames. We have studied the
presence and location of several different species in a CH4 /air flat flame at atmospheric pressure.
The concentration profiles of CH, OH, HCO and CH2 in a burner stabilized flat flame of a premixed
CH4 /air burner have been measured. Since at atmospheric pressure the CH radical is present only in a
very narrow area at the flame front, specific problems due to the finite size of the laser beam and
thermal deflection are encountered which make the investigation particularly challenging. The
excitation laser beam was matched to the cavity modes with an ICCD camera to obtain a good spatial
resolution.
The CH radicals are excited from the X2Π3/2 to the A2∆ state at 430 nm. After corrections for the spatial
intensity distribution and bandwidth of the laser beam CH density distributions are obtained for two
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different stoichiometries in a burner stabilized flame. Signal-to-noise ratios indicated that total CH
densities down to 8⋅1010 cm−3, corresponding to 3 ppb can be detected easily. The local flame
temperature is derived from measured Boltzmann distributions. The results are compared to model
calculations using GRI-Mech 2.11. The predicted CH peak concentrations are 28% higher and are
shifted by 0.2 mm to a larger distance above the burner surface. Also, the computed CH maximum
appears at a higher temperature, further away from the burner.
OH density distributions have been measured via the X2Π to the A2Σ+ transition at 307 nm.
Comparisons with direct absorption and bi-directional LIF measurements and numerical simulations
show a reasonable to good agreement both for concentrations and derived temperatures. In addition,
data on the minority species CH2 and HCO have been collected by absorption in the 620 nm wavelength
range and compared to results from model calculations. It was found that the sensitivity was limited by
the large temperature gradient resulting in a deflection of the laser beam.

CH AND FORMALDEHYDE STRUCTURES IN PARTIALLY-PREMIXED METHANE/AIR COFLOW FLAMES
R.J.H. Klein-Douwel, Department of Applied Physics, University of Nijmegen, Toernooiveld, 6525 ED
Nijmegen, The Netherlands, and J.B. Jeffries, J. Luque, G.P. Smith and D.R. Crosley, Molecular Physics
Laboratory, 333 Ravenswood Ave., SRI International, Menlo Park, CA 94025 (Presented as a Work-in-
Progress Poster at the 28th International Symposium on Combustion, Held in Edinburgh, Scotland,
August 2000).

The structures of CH and CH2O in partially premixed, atmospheric pressure, methane/air Bunsen-type
coflow flames are examined with planar laser induced fluorescence (LIF) imaging. LIF excitation
strategies are chosen to minimize the temperature dependent partition function variation for CH2O
and to maintain signal strength for CH while eliminating Rayleigh scattering background in the CH
images. Spatially resolved excitation and fluorescence scans form detection strategies to isolate CH and
CH2O. The structures of the premixed inner cone of the Bunsen flame are determined from two-
dimensional images of the LIF for fuel/air stoichiometries, 1.36≤Φ≤3.0. The formaldehyde structure
appears inside the CH in the inner flame cone for the moderately fuel rich stoichiometries typical of
well-tuned, blue flames used in natural gas appliances. At richer inner flame stoichiometries the CH
structure begins to disappear and by Φ=2.7 no CH LIF can be distinguished from the background.
However, the formaldehyde exhibits a distinct inner flame cone structure even for very fuel rich
conditions, with a width increasing as the inner cone becomes richer. The variation in the relative
concentrations of CH and formaldehyde are replicated in a one-dimensional model of the inner cone
reaction zone with a flame velocity matching to the experiment. The prediction of the absolute CH
concentration agrees within a factor of two with the measured value. LIF images of CH and CH2O were
observed for a variety of flame inserts, with accompanying exhaust probe measurements of CO and
NO. Metal objects are often inserted into appliance flames to reduce NOx emissions and improve heat
transfer. We observe that a variety of metal inserts reduced NO, increased CO, and broadened CH2O
structures in the flames studied here.

A MICROELECTROCHEMICAL NOX SENSOR FOR COMBUSTION EXHAUSTS
A. Kemal and C.T. Bowman, Department of Mechanical Engineering, Stanford University, Stanford, CA
94305 (Presented as a Work-in-Progress Poster at the 28th International Symposium on Combustion, Held
in Edinburgh, Scotland, August 2000).

A chemiresistive micromachined NOx sensor for combustion exhaust application has been developed.
The sensor uses a thin (100 nm) amorphous tungsten oxide film the resistance of which is sensitive and
selective to NOx in the presence of other combustion products. Conventional CMOS fabrication
techniques were used to build the sensor on a silicon wafer. The thin tungsten oxide film is deposited
on a plate that is released from the silicon wafer using a wet bulk etching process that forms an
inverted pyramidal cavity under the plate providing excellent thermal insulation. A polysilicon heating
element and an aluminum temperature sensing plate are incorporated into the released plate to provide
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closed-loop temperature control of the plate and sensing film. The tungsten oxide film was deposited by
sputtering of a pure WO3 target in an oxygen-rich environment. Rutherford backscattering was used to
measure film stoichiometry, which was found to be WO3±0.08 .
The completed NOx sensor was characterized in a calibration facility consisting of gas flow control
panel, a Pyrex test cell and a NOx chemiluminescence analyzer. The flow panel accurately meters three
gas streams so that the composition of the gas in the test cell can be varied. The sensor sensitivity and
speed of response were determined by measuring film resistance as a function of NO mole fraction and
film temperature. These measurements show that the response of the thin film to NO in NO/N2 /O2

mixtures was independent of the O2 mole fraction. The response of the sensor to NO can be modeled by
a Freundlich isotherm that relates film resistance to the partial pressure of NO by

Rfilm=R0constant (1+PNO
m)

where R0 is the film resistance in the absence of NO and m is a fitting constant that is a function of
temperature. The sensitivity of the sensor decreases and the sensor time constant decreases as the film
temperature increases. Phase transformation and grain growth in the tungsten oxide film limits the
operating temperature to below 315 °C. The 90%-response time decreases from 4 minutes at room
temperature to approximately 1.7 minutes at 80 °C, the highest film temperature tested. In the film
temperature range investigated, the sensor accuracy is approximately ±5 ppm for 300 ppm NO, and the
minimum detectivity is approximately 5 ppm.
In combustion products, the strongest interference to NO on chemiresistive sensors is due to CO,
which has a similar valence outer shell as NO. To examine the selectivity of the sensor, the sensor was
exposed alternately to NO, CO and combinations of these species. No detectable change in sensor resistance
was found when it was exposed to 500 ppm CO, and the sensor response to NO did not change in the
presence of CO.

THE STRUCTURE OF KINETIC RATE EQUATIONS LEADS TO STEADY STATES, RADICAL POOLS AND LOW
DIMENSIONAL MANIFOLDS
J.R. Creighton, Consultant, Oakland CA (Presented as a Work-in-Progress Poster at the 28th International
Symposium on Combustion, Held in Edinburgh, Scotland, August 2000).

The chemical kinetics mechanisms of combustion reactions frequently lead to steady states and radical
pools. Steady states and radical pools are established quickly. Maas and Pope have taken advantage of
this to devise numerical schemes where the progress of the reaction is calculated using only a few
variables that change slowly. The remainder of the variables are effectively held at their steady state
value. Frequently one or two variables are sufficient to reproduce the heat release with reasonable
accuracy. (Lam and Goussis have developed a related method.)
This work links steady states and radical pools to the structure of the chemical kinetic rate equations.
Although the rate equations are non-linear, and solutions of non-linear differential equations often
exhibit interesting behavior, steady states and radical pools arise even from linearized equations such
as those used to analyze the induction period of hydrogen or methane oxidation. Hirschfelder, and later
Winslow, pointed out that chemical kinetic rate equations take the form

d[Xi]/dt = F - G[Xi] (1)
where F and G are sums of non-negative terms, each of which represents a forward or reverse reaction
rate, one for each reaction involving species Xi . Note that all terms involving Xi are negative and that F
does not contain terms in species Xi . The local solution of Eq. 1, assuming F and G are approximately
constant is

[Xi] = F/G + ([Xi]0 - F/G)exp[-G(t-t0)]
It is clear that every Xi , including reactants and products, has a steady state [Xi]=F/G which is
approached with a time constant 1/G.
If the dominant terms in F are proportional to intermediate concentrations [Xk]k≠i then two or more
species concentrations are coupled. For example, in the H2+Br2 reaction one gets

[H] = (k1[H2]/k2[Br2])[Br]
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constituting a radical pool. In the case of branching chain reactions, substitution of steady states into
terms in F yields terms proportional to Xi whose sum is greater than G[Xi], leading to growth of the
radical pool. Thus, steady states and radical pools arise out of the structure of Eq. 1.
The Low Dimensional Manifold method of Maas and Pope was applied to the H2+O2 reaction
mechanism. The resulting numerical eigenvalues were close, but not identical, to the time constants
obtained from Eq. 1 and by substituting steady states into the rate equation for [H].

LAMINAR NON-PREMIXED FLAME CALCULATIONS OF METHANE WITH HIGHLY PREHEATED AIR
B.B. Dally, Department of Mechanical Engineering, The University of Adelaide, South Australia, Australia
(Presented as a Work-in-Progress Poster at the 28th International Symposium on Combustion, Held in
Edinburgh, Scotland, August 2000).

Flameless Oxidation (FLOX) is a combustion regime which incorporates recirculation of hot combustion
products to the oxidant stream (vitiation) to oxidize the fuel without having a flame. The concept is
being explored commercially by Japanese scientists in a full scale furnace. This regime achieves low
emission of NOx and CO pollutants and improved fuel savings. Its application can also be tailored to
low calorific fuels, which are often produced in chemical processes or vented from coal mines. The
combustion in these devices takes place at reduced temperature in the range of 1100-1700 K. It is
characterized by a flat thermal field, minor temperature fluctuations and when optimized, there are no
visible or audible flame, hence the name.
In this poster the laminar nonpremixed flame is investigated computationally using the OPPDIF code.
Methane is used as fuel, while the air was diluted with combustion products (CO2 and H2O) to alter the
oxygen levels in the oxidant stream. The chemical kinetics mechanism used in the calculations has
been optimized for low temperature methane oxidation. It consists of 51 species and 200 reactions
including nitrogen oxidation. It is worth mentioning that the GRI 2.1 mechanism do not sustain
methane flames at temperatures lower than 1400 K. Current investigation using the GRI 3.0
mechanism is underway.
The methane nonpremixed laminar flame calculations under preheated oxidizer stream conditions and
at low strain rate exhibit the following characteristics:
1. An increase in the oxidizer stream temperature broadens the reaction zone substantially and

exhibits a distributed reaction regime;
2. At temperatures higher than 1200 K and low oxygen levels (<4% by volume) the combustion regime

resembles that of the FLOX regime;
3. The OH radical at the FLOX conditions does not seem to be of importance while CH2O species

increases substantially under these conditions.
This work is a first in a series that aim at enhancing the understanding of FLOX combustion. In
particular, issues such as Damkohler number effects on the structure and stability of the flame will be
explored. A burner is being built to investigate laminar and turbulent nonpremixed flames under the
FLOX regime. This burner will be used to conduct measurements or reactive scalars using single-point
Raman-Rayleigh-LIF measurements at Sandia National Laboratory later in the year.

TEMPERATURE DEPENDENCE OF RADICAL RECOMBINATION BY PHOSPHORUS BASED FLAME
SUPPRESSANTS
M.A. MacDonald, E.M. Fisher and F.C. Gouldin, Sibley School of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, NY (Presented as a Work-in-Progress Poster at the 28th International
Symposium on Combustion, Held in Edinburgh, Scotland, August 2000).

The influence of dimethyl methyl phosphate, DMMP(O=P(OCH3)2CH3), on OH concentrations was
studied in atmospheric pressure, nonpremixed flames of CH4 versus O2 /N2 /Ar in an opposed-jet burner.
OH concentrations were measured using laser induced fluorescence (LIF). Phosphorus-based flame
suppressants, such as DMMP, are believed to inhibit flames via catalytic radical recombination of H and
OH. In this study the "inhibition effectiveness" of DMMP is evaluated in terms of reduction in OH
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concentration due to its presence. The influence of flame temperature on inhibition effectiveness is an
important consideration in evaluating the feasibility of new chemically-active flame inhibitors and has
direct bearing on synergistic effects observed when these inhibitors are combined with physical agents
such as N2 , CO2 , or water. A series of four flames with differing adiabatic flame temperatures were
studied. Flame temperature was varied by changing the proportions of N2 and Ar in the oxidizer side
diluent, while maintaining 21% (by vol) O2 and thus a constant stoichiometric mixture fraction of
0.055. Adiabatic flame temperatures ranged from 2260 K (79% N2 - 21% O2, note: this is slightly hotter
than a typical methane/air flame due to 100 °C reactant preheat necessary to keep DMMP in the gas
phase) to 2558 K (79% Ar - 21% O2). In the absence of DMMP, measured OH profile widths show good
agreement with OPPDIF calculations made using GRI Mech 3.0 for all flames considered. Corrections to
raw LIF data for Boltzmann factor and local quenching environment are performed using temperature
and major species data from the calculations. Peak OH concentrations from calculations of the
undoped flames are used to calibrate the corrected LIF measurements. Measurements of DMMP's
inhibition effectiveness are not affected by this final calibration as they are expressed in terms of the
fractional reduction in the total OH population relative to the undoped flame.
Addition of 572 ppm of DMMP to the oxidizer stream for the N2-O2 versus CH4 flame results in a 23%
reduction in total OH population (integrated across flame width). In the substantially hotter Ar-O2

versus CH4 flame the same loading results in a reduction of less than 3%. Earlier extinction
measurements conducted with the same configuration in which both temperature and stoichiometric
mixture fraction were varied, indicated the same trend of decreasing effectiveness (measured in terms
of reduction in global extinction strain rate) with increasing temperature. This temperature
dependence implies that a mixture of inert and phosphorus-based inhibitors would interact
synergistically as the physical agent cools the flame, thus increasing the efficiency of the chemically-
active component. In the current work, the inhibition effectiveness of DMMP is observed to vary linearly
with adiabatic flame temperature over the range of conditions considered. A short extrapolation of the
data indicates that at an adiabatic flame temperature near 2600 K the inhibition effectiveness of
phosphorus-based agents will be reduced to zero, with flame promotion occurring at higher
temperatures. These results are compared to calculations made using a proposed mechanism for DMMP
decomposition and phosphorus radical chemistry. It should be noted that these strained laminar flames
have calculated peak temperatures nearly 300 K cooler than the adiabatic flame temperatures, thus the
flame promotion temperature threshold predicted by the experiments is actually in the vicinity of
2300 K.

KINETICS OF THE REACTION Al(2P)+SF6 IN THE TEMPERATURE RANGE 300-600 K
N.L. Garland and J.K. Parker, Chemistry Division, Naval Research Laboratory, 4555 Overlook Ave.,
Washington, DC 20375, Fax (202) 404-8119, e-mail: nancy.garland@nrl.navy.mil,
chjkp@normandy.nrl.navy.mil (Presented at the 220th National Meeting of the American Chemical
Society, Held in Washington DC, August 2000).

The kinetics of the gas phase reaction of ground state 2P aluminum atoms with sulfur hexafluoride
have been studied over the temperature range 300-600 K in a resistively heated flow reactor.
Aluminum atoms are generated by photolysis of trimethylaluminum at 248 nm and are monitored by
laser induced resonance-fluorescence at 394.4 nm. Most experiments were carried out at about 50 torr
total pressure using argon as a buffer gas. Temperatures were obtained, in separate experiments, from
rotational spectra of AlO using the (B2Σ+-X2Σ+),(1,0) band. The reaction rate constant is pressure-
independent between 5-50 torr total pressure at room temperature, consistent with a simple atom
abstraction mechanism. The data indicate a 2.4 kcal/mole activation energy for the reaction. The
implications of these results on models of aluminum particle combustion in fluorine containing
environments will be discussed.
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THE REACTION, CH+O2 , AS A SOURCE OF OH(A2Σ+) IN ATOMIC FLAMES AND ITS RATE COEFFICIENT
BETWEEN 295 AND 800 K
S.A. Carl, M. Van Poppel and J. Peeters, Department of Chemistry, University of Leuven, Celestijnenlaan
200F, B-3001 Leuven, Belgium (Presented as a Work-in-Progress Poster at the 28th International
Symposium on Combustion, Held in Edinburgh, Scotland, August 2000).

Minor pathways, producing electronically excited species such as CH*, OH*, C2* and HCO*, in a small
group of highly exothermic reactions are responsible for nearly all the visible and near ultraviolet
emissions from hydrocarbon flames. The relatively short lifetime of these electronically excited
products establishes the direct proportionality of chemiluminescence intensity to their rate of
formation. Consequently, chemiluminescence emissions, in flames of suitable geometry, are able to
provide highly spatially resolved information on, for example, specific chemical pathways and fuel
consumption rates. Meaningful interpretation of flame chemiluminescence measurements however,
requires knowledge at least of the reaction, or reactions, leading to formation of the electronically
excited species. Further, if the rate coefficients for such reactions are known, absolute determination of
the concentration product of the reactants is possible.
Although the reaction of CH with O2 has long been the prime candidate as the source of OH
chemiluminescence in many flames, it has not been definitely established.
In this work we have measured chemiluminescence emission, OH(A2∆-X2Π) intensities from a low-
pressure C2H2 /O2 /O/H flame, set up in an isothermal fast-flow reactor, were correlated against CH and
O2 concentrations as a function of reaction time and under a variety of helium-diluted C2H2 /O2 /O/H
mixtures. The species concentrations were measured using molecular-beam sampling threshold-
ionization mass spectroscopy. Under all conditions the OH chemiluminescence intensity was found to
be directly proportional to the concentration product, [CH][O2] over a range of 2 decades. It is argued
that the reaction CH+O2 is the major, if not the only, source of electronically excited OH in such
flames. We are also carrying out detailed, absolute calibrations for [CH] and [OH(A2∆)] that will allow
accurate determination of the rate coefficient of the title reaction over the temperature range 295 to
900 K.

REACTION DYNAMICS OF CH2 , C2H, C2H3 WITH O2 AND NO STUDIED BY TIME-RESOLVED FTIR
SPECTROSCOPY
F. Wong, H. Su, H. Wang, M. Huang and B. Chen, Institute of Chemistry, Chinese Academy of Sciences,
Beijing, China 100080 (Presented as a Work-in-Progress Poster at the 28th International Symposium on
Combustion, Held in Edinburgh, Scotland, August 2000).

Elementary reactions of CH2 , C2H and C2H3 radicals with O2 and NO have been studied by Time-
Resolved FTIR Spectroscopy. The nascent reaction products are directly observed within ten collisions.
For each reaction, several channels are identified. The intermediate and the transient state are also
studied by ab initio or DFT calculations.
Electronically state-specific CH2(X3B1) and CH2(a1A1) radicals were produced by laser photolysis of
ketene at 351 and 308 nm, respectively. Vibrationally excited products of CO(v<8), CO2(v<7), H2CO,
H2O formed in CH2(X3B1)+O2 reaction and CO formed in CH2(a1A1)+O2 reaction have been observed.
For each reaction, three possible channels have been verified.
For CH2+NO reaction, the primary products of vibrationally excited CO, HCO, HOCN, OH and NH2

were detected for the first time and four reaction channels have thus been identified. Theoretically, a
doublet potential energy surface is characterized. On the potential energy surfaces, both the
CH2(X3B1)+NO and CH2(a1A1)+NO systems reach a crucial intermediate OCHNH via a CNO ring-
closure and ring-open process.
Vibrationally excited products of CO, HCO, HNC and HCN were observed from the C2H+NO reaction.
Three exothermic reaction channels leading to HCN+CO, HNC+CO and CN+HCO are identified,
verifying an association-elimination reaction mechanism. The nascent product of CO and CO2 were
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observed for the reaction of C2H with O2 . The experimental observation supports that the reaction is a
rapid and fierce process, preferably forming CO and HCO.
Three channels of the C2H3+O2 reaction, HCO+H2CO, CH3+CO2 and C2H2+HO2 , have been verified.
For the C2H3+NO reaction, the nascent products of H2CO and HCN have been observed.

KINETICS OF THE REACTIONS OF HYDROCARBON RADICALS WITH CH3 . THE REACTIONS R+CH3(R=C2H5 ,
n-C3H7 , n-C4H9 , C3H5 , C3H3)
V.D. Knyazev and I.R. Slagle, Department of Chemistry, The Catholic University of America, Washington,
DC 20064 (Presented as a Work-in-Progress Poster at the 28th International Symposium on Combustion,
Held in Edinburgh, Scotland, August 2000).

Rate constants of the gas phase reactions of five saturated and unsaturated hydrocarbon radicals with
CH3

(1) C2H5+CH3 → products, k1=5.86x10−5 T−2.11exp(-394K/T), 301-800 K
(2) n-C3H7+H3 → products, k2=1.15x10−8 T−0.84exp(+45K/T), 297-600 K
(3) n-C4H9+CH3 → products, k3=1.19x10−6 T−1.55exp(-131K/T), 297-520 K
(4) C3H5(allyl)+CH3 → products, k4=6.46x10−8 T−1.08exp(-90K/T), 301-800 K
(5) C3H3(propargyl)+CH3 → products, k5=2.91x10−4 T−2.27exp(-561 K/T), 301-800 K

were measured over wide ranges of temperatures (see above) at densities of He in the interval (3-
36)x1016 atoms cm−3 by the Laser Photolysis/Photoionization Mass Spectrometry technique. Units of
rate constants are cm3 molecule−1 s−1.
The R+CH3 rate constant measurements were performed under pseudo-first order conditions using a
method similar to that used earlier by Niiranen and Gutman. CH3 and R radicals were produced by the
193 nm photolysis of acetone

CH3C(O)CH3 → 2 CH3+CO (6)
and the simultaneous photolysis of the corresponding precursor of the radicals. Under the experimental
conditions used in the current work, reaction 6 accounts for more than 95% of acetone photolysis.
Concentrations of radical precursors were selected to create a large excess of initial concentrations of
methyl radicals over the total combined concentration of all the remaining radicals formed in the
system, so that the R+CH3 process under study dominates all other minor reactions of R. The temporal
evolution of the ion signals of R, CH3 and CH3C(O)CH3 was monitored in real time. Under each set of
conditions, the values of the rate constants were obtained from the observed radical decay profiles. The
temperature dependences obtained can be represented with modified Arrhenius expressions.

COMPLEXITY OF KINETICS AND PRODUCT CHANNELS FOR C2H3+O2

P.R. Westmoreland, Department of Chemical Engineering, University of Massachusetts, 159 Goessmann,
Box 33110, 686 N. Pleasant, Amherst, MA 01003, Fax (530) 327-9669, e-mail: westm@ecs.umass.edu
(Presented at the 220th National Meeting of the American Chemical Society, Held in Washington DC,
August 2000).

Vinyl radical (C2H3) can react with O2 by a large number of pathways. Because its other dominant
reactions are decomposition or addition for molecular weight growth, quantitative rate constants are
important for designing furnaces and turbines to form or prevent pollutant PAH and soot. Two direct
H-transfer reactions give C2H2+HO2  while combination leads to about twenty more channels because
of chemical activation. Only a few prove to be important, as determined by a combination of ab initio
quantum chemistry [largely BAC-MP4/6-31G(d,p)//UHF/6-31G(d)], quantum reaction theory [Bimolecular
Quantum-RRK and RRKM] and experiments. Dominant product channels are predicted to be
CH2O+CHO, C2H3O+O, and C2H2+HO2 , but at high temperatures, the dominant channel is to revert
to reactants, causing the rate constant toward products to decrease dramatically with increasing
temperature.
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KINETICS AND MECHANISM FOR THE REACTION OF PHENYL RADICAL WITH FORMALDEHYDE
Y.M. Choi, W. Xia, J. Park and M.C. Lin, Department of Chemistry, Emory University, 1515 Pierce Dr.,
Atlanta, GA 30322, Fax (404) 727-6586, e-mail: ymchoi@euch4e.chem.emory.edu (Presented at the 220th
National Meeting of the American Chemical Society, Held in Washington DC, August 2000).

The kinetics and mechanism for the C6H5+CH2O reaction was investigated by the Cavity Ringdown
Spectrometric and Pulsed Laser Photolysis/Mass Spectrometric methods at temperatures between 298
and 1083 K. The measured values of the rate constants obtained by the two different methods agree
closely, suggesting that the C6H5+CH2O=C6H6+CHO reaction is the dominant channel. A weighted
least-squares analysis of the two sets of data gave

k=8.55x104 T2.19exp[-19/T] cm3 mol−1 s−1

for the temperature range studied. The mechanism for the C6H5+CH2O reaction was also elucidated
with a quantum-chemical calculation employing a hybrid density functional theory using the
aug-cc-PVTZ basis set. The rate constant calculated for the H-abstraction process using the predicted
0.8 kcal/mol barrier with a small tunneling correction agrees closely with the experimental result,
particularly at low temperatures.

MECHANISM AND ABSOLUTE RATE COEFFICIENTS FOR THE REACTION OF PHENYL RADICAL WITH
ACETYLENE: A THEORETICAL STUDY
I.V. Tokmakov and M.C. Lin, Department of Chemistry, Emory University, 1515 Pierce Dr., Atlanta, GA
30322, Fax (404) 727-6586, e-mail: itokmak@emory.edu (Presented at the 220th National Meeting of the
American Chemical Society, Held in Washington DC, August 2000).

The theoretical analysis of the PES for the C6H5+C2H2 addition reaction revealed that chemically
activated adducts can undergo several isomerization pathways in competition with well-known
deactivation and H-elimination channels. Thus formed isomeric C8H7 vinylic, aromatic and bicyclic
radicals can serve as active agents in the mass growth reactions with C2H2 and other light unsaturated
hydrocarbons and radicals. The latter processes are relevant to the PAH formation in hydrocarbon
combustion at moderate temperatures. The calculated G2M energetics agree well with the available
experimental data. Our predicted heat of the C6H5+C2H2=C6H5CCH+H reaction, ∆H0K= -10.9 kcal/mol,
lies within the uncertainty limits of the experimental value of -12.2 kcal/mol and the calculated barrier
for the addition step at 0 K, 3.8 kcal/mol, is in reasonable agreement with the experimental activation
energy, 3.1 kcal/mol.

KINETICS OF THE REACTIONS OF C6H5 WITH C6H5C2HX(x=1,3)
G.J. Nam, I.V. Tokmakov, J. Park and M.C. Lin, Department of Chemistry, Emory University, 1515 Pierce
Dr., Atlanta, GA 30322, Fax (404) 727-6586, e-mail: ginam@euch4e.chem.emory.edu (Presented at the
220th National Meeting of the American Chemical Society, Held in Washington DC, August 2000).

The reactions of C6H5 with phenylacetylene (C6H5C2H) and styrene (C6H5C2H3) have been investigated
using the cavity ringdown technique in the temperature range 297-410 K. The weighted least squares
analysis for each reaction gave rise to the following rate constant expressions in units of cm3/(mol s):

k(x=1) = 1.0x1013exp(-1224/T) and
k(x=3) = 2.0x1013exp(-1294/T).

The theoretical study of these reactions at the B3LYP/cc-pvdz level of theory showed that the phenyl
radical addition at the beta position is the most favorable reaction mode. The products of C6H5 beta-
addition to C6H5C2Hx feature benzyl-type free radicals stabilized by an overlap with aromatic pi-orbitals
(for both x=1 and x=3). The calculated barriers at 0 K for the addition step are 1.5 and 0.7 kcal/mol for
C6H5C2H and C6H5C2H3 , respectively.
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RATE CONSTANTS FOR H+O2+M→HO2+M AT ROOM TEMPERATURE IN SEVEN BATH GASES AND AT HIGH
TEMPERATURE IN N2 , Ar AND O2

J.V. Michael, M.-C. Su, J.W. Sutherland and J.J. Carroll, Chemistry Division, Argonne National
Laboratory, Argonne, IL 60439 (Presented as a Work-in-Progress Poster at the 28th International
Symposium on Combustion, Held in Edinburgh, Scotland, August 2000).

The third-order reaction H+O2+M was directly studied in seven bath gases. The detection method for
H-atom depletion was H-atom atomic resonance absorption spectrometry. In these experiments, the
measured room temperature rate constants for H2O, N2 , O2 , Ar, Kr, Ne and He are 50(±5), 4.32(±0.28),
3.13(±0.06), 2.16(±0.14), 2.10(±0.10), 1.40(±0.04), and 1.80(±0.07), all with 2σ errors and in units of
10−32 cm6 molecule−2 s−1, respectively. These room temperature values were then combined with
T-dependent values (450-700 K) obtained in N2 , Ar, and O2 using the Laser Photolysis-Shock Tube
technique. For these three cases, the T-dependence can be adequately described by

N2 , k(T) = 4.82(±1.03) x 10−29 T−1.23(±0.04)

Ar,  k(T) = 1.26(±0.27) x 10−29 T−1.12(±0.04)

and O2 , k(T) = 1.57(±0.38) x 10−29 T−1.09(±0.04)

in cm6 molecule−2 s−1 units.
These values are in substantial agreement with Mueller, Yetter and Dryer and also with Bates, Hanson,
Bowman and Golden. Unimolecular rate theory is used to rationalize the present and previous results.

AB INITIO MOLECULAR ORBITAL AND RATE CONSTANT CALCULATIONS FOR THE NCO+NO REACTION
R. Zhu and M.C. Lin, Department of Chemistry, Emory University, 1515 Pierce Dr., Atlanta, GA 30322,
Fax (404) 727-6586, e-mail: rszhu@euch4e.chem.emory.edu (Presented at the 220th National Meeting of
the American Chemical Society, Held in Washington DC, August 2000).

The mechanism for the NCO+NO reaction has been studied using the modified G2 method (G2M) in
conjunction with RRKM calculations. The results indicate that the reaction occurs primarily via singlet
potential surface according to the following steps: (1) NCO+NO↔OCNNO→2 N2O+CO; (2)
NCO+NO↔OCNNO→2 cyc-NNC(O)O→2 N2+CO2 . Both processes take place via very tight transition
states. The decomposition of the intermediate OCNNO to products N2O+CO is energetically less
favorable (by about 8.2 kcal/mol) than the cyclization process of forming cyc-NNC(O)O intermediate.
The calculated reaction heat for step (1) and (2) are 64.3 and 150.2 kcal/mol, respectively, which are in
agreement with experimental values of 65 and 153 kcal/mol. The total rate constant and product
branching ratio have been calculated employing canonical variational RRKM theories.

ROTATIONAL AND TRANSLATIONAL ENERGY TRANSFER IN COLLISIONS BETWEEN HIGHLY VIBRATIONALLY
EXCITED PYRAZINE AND CO
Q. Ju, N. Seiser, E. Sevy, J.-Y. Cai and G. Flynn, Department of Chemistry, Columbia University, New
York, NY 10027, Fax (212) 860-6988 (Presented at the 220th National Meeting of the American Chemical
Society, Held in Washington DC, August 2000).

High resolution infrared transient absorption spectroscopy is used to study translational and rotational
energy transfer in collisions between highly vibrationally excited pyrazine (E=41000 cm−1) and the bath
gas CO. Vibrationally hot pyrazine was excited via 248 nm excimer laser pumping followed by rapid
non-radiant decay to its ground electronic state. The nascent CO(v=0,J=21~36) populations and their
recoil velocities were measured following single collisions with energized pyrazine. High level-density
field to state energy transfer probabilities and rates were determined over the temperature range 243 to
364 K. The energy transfer distribution function, P(E,E′), and the collision mechanism have been
explored. Comparisons among Pyrazine/CO, Pyrazine/CO2 , Methylpyrazine/CO2 , and
Perfluorobenzene/CO2 provide important insights into the energy transfer mechanism for molecules
with chemically significant amounts of energy.
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TECHNICAL MEETINGS

(Current Additions to this List are Indicated by a Diamond Bullet Marking)

SEPTEMBER 3-7, 2000

16th INTERNATIONAL CONFERENCE ON HIGH RESOLUTION MOLECULAR SPECTROSCOPY
Prague, Czech Republic.

Information: S. Urban, UFCH JH Academy of Sciences of the Czech Republic, Dolejskova 3,
Prague, Czech Republic, CZ-18223, (420) 2-6605-3635, Fax (420) 2-858-2307, e-mail:
praha2k@jh-inst.cas.cz, http://www.chem.uni-wuppertal.de/conference/

SEPTEMBER 3-8, 2000

11th EUROPEAN CONFERENCE ON DIAMOND, DIAMOND-LIKE MATERIALS, CARBON NANOTUBES,
NITRIDES AND SILICON CARBIDE
Porto, Portugal.

Information: L. Reed, Conference Secretariat, e-mail: e.reed@elsevier.co.uk,
http://www.elsevier.nl/locate/diamondconf

SEPTEMBER 4-8, 2000

EUROPEAN AEROSOL CONFERENCE
Trinity College, Dublin, Ireland.

Information: The Aerosol Society, P.O. Box 34, Portishead, Bristol, BS20 7FE, UK,
http://www.aerosol-soc.org.uk

SEPTEMBER 10-13, 2000

3rd EUROPEAN THERMAL SCIENCES CONFERENCE
Heidelberg, Germany.

Information: E. Hahne, Institut fur Thermodynamik und Warmetechnik, Pfaffenwaldring 6,
70550 Stuttgart, Germany, 49 (0) 711-685-3536, Fax 49 (0) 711-685-3503, e-mail:
pm@itw.uni-stuttgart.de

SEPTEMBER 10-15, 2000

CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND THE INTERNATIONAL QUANTUM
ELECTRONICS CONFERENCE (IQEC)
Nice, France.

Information: Optical Society of America, Meetings Department, 2010 Massachusetts Ave NW,
Washington, DC 20036, (202) 223-0920, e-mail:  confserv@osa.org
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SEPTEMBER 10-15, 2000

1st INTERNATIONAL SYMPOSIUM ON MICROGRAVITY RESEARCH AND APPLICATION IN PHYSICAL
SCIENCES AND BIOTECHNOLOGY
Sorrento, Italy.

Information: ESTEC, Conference Bureau, P.O. Box 299, 2200 AG Noordwijk, The
Netherlands, (71) 5655005, Fax (71) 5655658, e-mail: confburo@estec.esa.nl

SEPTEMBER 10-15, 2000

7th DURHAM CONFERENCE ON PLASMA SOURCE MASS SPECTROMETRY
Durham UK.

Information: G. Holland, Department of Geological Sciences, Science Laboratories, South
Road, Durham City DH1 3LE, UK, e-mail: tannersd@sciex.com, (44) 191-374-2526, Fax (44)
191-374-2510.

SEPTEMBER 12-14, 2000

3rd UNITED KINGDOM MEETING ON COAL RESEARCH AND ITS APPLICATIONS
Birmingham, UK.

Information: H.J. Graham, Power Technology Centre, Radcliffe-on-Soar, Nottingham
NG11 0EE, UK, 44(0)115-936-2460, Fax 44(0)115-936-2205, e-mail:
helen.graham@powertech.co.uk

SEPTEMBER 13-16, 2000

2nd INTERNATIONAL CONFERENCE ON INORGANIC MATERIALS
Santa Barbara CA.

Information: Sarah Wilkinson, Conference Secretariat, Elsevier Science Ltd., The Boulevard,
Langford Lane, Kidlington, Oxford, UK OX5 1GB, 44(0) 1865 843691, Fax 44(0) 1865 843658,
e-mail: sm.wilkinson@elsevier.co.uk, http://www.elsevier.com/locate/im2000

SEPTEMBER 18-20, 2000

13th INTERNATIONAL SYMPOSIUM ON GAS FLOW AND CHEMICAL LASERS AND HIGH POWER LASER
CONFERENCE
Florence, Italy.

Information: C. Pescucci, Fax 39(0) 55-233-7755, e-mail: gcl-hpl@ino.it, www.ino.it/GCL-HPL
or www.es.titech.ac.jp/~kkasuya/gcl-web/index.html

SEPTEMBER 19-21, 2000

THE HYDROGEN ENERGY FORUM 2000
Munich, Germany.

Information: The Future Energies Forum, "Forum fur Zukunftsenergien", Godesberger Allee
90, D-53175 Bonn, Germany, Fax 49(0) 228-959 56-50, e-mail: energie.forum@t-online.de
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SEPTEMBER 22-30, 2000

27th ANNUAL CONFERENCE OF THE FEDERATION OF ANALYTICAL CHEMISTRY AND SPECTROSCOPY
SOCIETIES
Nashville TN.

Information: Division of Analytical Chemistry, FACSS, (505) 820-1648, Fax (505) 989-1073,
Web Site: http://FACSS.org/info.html

SEPTEMBER 23-26, 2000

ASME FALL TECHNICAL CONFERENCE OF THE INTERNAL COMBUSTION ENGINE DIVISION
Peoria IL.

Information: Meetings Department, American Society for Mechanical Engineers, 345 E. 47th
Street, New York, NY 10017, (212) 591-7054, Fax (212) 705-7143, http://www.asme.org

SEPTEMBER 24-26, 2000

1st ROMANIAN INTERNATIONAL CONFERENCE ON ANALYTICAL CHEMISTRY
Brasov, Romania.

Information: G.L. Radu, University of Bucharest, Faculty of Chemistry, 4-12, Elisabeta Blvd.,
Bucharest, Romania 703461, 40(1) 220 77 80/220 79 09, Fax 40(1) 220 76 95, e-mail:
lucian@ibd.dbio.ro

SEPTEMBER 29-30, 2000

FOUR CORNERS SECTION FALL MEETING OF THE AMERICAN PHYSICAL SOCIETY
Fort Collins CO.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

OCTOBER 2-5, 2000

ICALEO 2000, INTERNATIONAL CONFERENCE ON APPLIED LASER APPLICATIONS AND
ELECTROOPTICS
Dearborn MI.

Information: E. Cohen, Laser Institute of America, (800) 345-2737 or (407) 380-1553, Fax
(407) 380-5588, http://www.laserinstitute.org

OCTOBER 2-6, 2000

5th INTERNATIONAL AEROSOL SYMPOSIUM
Budapest, Hungary.

Information: N.N. Belov, Hungary, 1046 Budapest, Deak F. u., 26/a Belov N., Tel/Fax (36) 1-
3791251, e-mail: belov@inext.hu, http://www.ias.inext.hu/uk-ias5-spo.htm.
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OCTOBER 4-5, 2000

FLAMMABLE AND COMBUSTIBLE LIQUIDS SYMPOSIUM
Baltimore MD.

Information: SFPE, 7314 Wisconsin Ave Suite, Bethesda, MD 20814, (301) 718-2910, Fax (301)
718-2242, http://www.sfpe.org/educational_programs.html

OCTOBER 8-11, 2000

GASIFICATION TECHNOLOGIES CONFERENCE
San Francisco CA.

Information: M. Samoulides, (650) 855-2127, or Electric Power Research Institute, 1412
Hillview Avenue, Palo Alto, CA 94304, (650) 855-2599, http://www.epri.com

OCTOBER 13-14, 2000

OHIO SECTION FALL MEETING OF THE AMERICAN PHYSICAL SOCIETY
Toledo, OH.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

OCTOBER 16-19, 2000

INTERNATIONAL FUEL AND LUBRICANTS FALL MEETING AND EXPOSITION OF THE SOCIETY OF
AUTOMOTIVE ENGINEERS
Baltimore MD.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale,
PA 15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, Web Site:
http://www.sae.org

OCTOBER 17-20, 2000

BEIJING INTERNATIONAL CONFERENCE ON APPLIED COMPUTATIONAL FLUID DYNAMICS
Beijing, China.

Information: Z. Tianyuan, Institute of Applied Physics and Computational Mathematics,
(86) 10-62374357, Fax (86) 10-62010108, e-mail: zty@mail.iapcm.ac.cn, http://www.ciccst.org.cn/acfd

OCTOBER 19-20, 2000

SAMPLING, ON-SITE ANALYSIS AND SAMPLE PREPARATION CONFERENCE
Pittsburgh PA.

Information: B. Sherman, PACS, 409 Meade Dr., Coraopolis, PA 15108, (724) 457-6576 or
(800) 367-2587, Fax (724) 457-1214, e-mail: hnpacs@aol.com, http://members.aol.com/hnpacs/
pacs.htm



5

OCTOBER 19-21, 2000

CONFERENCE ON PHOTOPHYSICS AND PHOTOCHEMISTRY
Oeiras, Portugal.

Information: A. Macanita, ITQB, AP 127, Oeiras, Portugal, 2781-901, (351) 21-4411277,
e-mail: pp2000@itqb.unl.pt, http://www.itqb.unl.pt/pp2000/

OCTOBER 20-21, 2000

NEW YORK SECTION FALL MEETING OF THE AMERICAN PHYSICAL SOCIETY
Buffalo NY.

Information: M. DeMarco, Department of Physics, SUNY-Buffalo State College, 1300 Elmwood
Ave., Buffalo, NY 14222, (716) 878-5230, e-mail: DemarcMJ@buffalostate.edu

OCTOBER 20-28, 2000

ANNUAL MEETING OF THE OPTICAL SOCIETY OF AMERICA AND THE INTERDISCIPLINARY LASER
SCIENCE CONFERENCE
Providence RI.

Information: Optical Society of America, Meetings Department, 2010 Massachusetts Ave NW,
Washington, DC 20036, (202) 223-0920, e-mail:  confserv@osa.org,
http://www.osa.org/mtg_conf
Deadline: Abstracts Due by May 16, 2000

OCTOBER 22-27, 2000

198th NATIONAL MEETING OF THE ELECTROCHEMICAL SOCIETY
Phoenix AZ.

Information: The Electrochemical Society, Inc., Meetings Department, 10 South Main Street,
Pennington, NJ 08534, (609) 737-1902, Fax (609) 737-2743, e-mail: ecs@electrochem.org,
http://www.electrochem.org/meetings/198/meet.html

OCTOBER 24-27, 2000

53rd ANNUAL GASEOUS ELECTRONICS CONFERENCE OF THE AMERICAN PHYSICAL SOCIETY
Houston TX.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

OCTOBER 25-28, 2000

35th MIDWEST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
St Louis MO.

Information: C.D. Spilling, Department of Chemistry, University of Missouri, St. Louis, 80001
Natural Bridge Road, St. Louis, MO 63121 (314) 516-5313, Fax (314) 553-5342, e-mail:
cspill@umsl.edu
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OCTOBER 25-28, 2000

36th WESTERN REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
San Francisco CA.

Information: N.D. Byington, Customs Service Laboratory, 630 Sansome Street, Room 1429,
San Francisco, CA 94111, (415) 705-4405 ext. 216, Fax (415) 705-4236, e-mail:
byington@crl.com; or S. Rodriguez, Chemistry Department, University of the Pacific,
Stockton, CA 95211, (209) 946-2598, Fax (209) 946-2607, e-mail: srodriguez@uop.edu

OCTOBER 28-29, 2000

JOINT FALL MEETING OF THE TEXAS SECTIONS OF THE APS, APPT AND ZONE 13 OF THE SPS
Houston TX.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

OCTOBER 29-NOVEMBER 3, 2000

EASTERN ANALYTICAL SYMPOSIUM OF THE AMERICAN CHEMICAL SOCIETY
Atlantic City NJ.

Information: S. Gold, Eastern Analytical Symposium, P.O. Box 633, Montchanin, DE 19710
(302) 738-6218, Fax (302) 738-5275, http://www.eas.org

NOVEMBER 1-2, 2000

COMPUTATIONAL AND EXPERIMENTAL METHODS IN RECIPROCATING ENGINES
London UK.

Information: U. Otuonye, Conference and Events Department C587, Institution of Mechanical
Engineers, 1 Birdcage Walk, London SW 1H 9JJ, UK, (0) 207-304-6864, Fax (0) 207-222-9881,
e-mail: u_otuonye@imeche.org.uk

NOVEMBER 2-4, 2000

SOUTHEAST SECTION MEETING OF THE AMERICAN PHYSICAL SOCIETY
Starkville MS.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

NOVEMBER 3-4, 2000

9th CONFERENCE ON CURRENT TRENDS IN COMPUTATIONAL CHEMISTRY
Vicksburg MS.

Information: S.R. Allen, Jackson State University, Jackson, MS 39217, (601) 979-3723, e-mail:
srallen@stallion.jsums.edu, http://www.ccl.net/cca/info/conferencelist/mess0665.shtml
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NOVEMBER 3-5, 2000

8th CONFERENCE ON MOLECULAR NANOTECHNOLOGY
Bethesda MD.

Information: Foresight Institute, Box 61058, Palo Alto, CA 94306, (650) 917-1122, Fax (650)
917-1123, http://www.foresight.org/conference

NOVEMBER 3-8, 2000

PHOTONICS EAST
Boston MA.

Information: Meetings Department, SPIE, P.O. Box 10, Bellingham, WA 98227, (360) 676-3290,
Fax (360) 647-1445, e-mail: spie@spie.org, http://www.spie.org

NOVEMBER 5-10, 2000

ASME INTERNATIONAL MECHANICAL ENGINEERING CONFERENCE AND EXHIBITION
Orlando  FL.

Symposia will Include:
• Symposium on Multiphase Flow in Biomedical Applications and Processes
• Dispersed Flows in Combustion, Incineration, and Propulsion Systems
• Application of Microfabrication to Fluid Mechanics

Information: Meetings Department, American Society for Mechanical Engineers, 345 E. 47th
Street, New York, NY 10017, (212) 705-7037, Fax (212) 705-7143, http://www.asme.org

NOVEMBER 5-10, 2000

INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW AND TRANSPORT PHENOMENA
Antalya, Turkey.

Topics will Include:
• Modeling of Multiphase Systems
• Transport Phenomena in Multiphase Systems
• Separation Phenomena, Processes and Equipment
• Measurement and Instrumentation
• Characteristic and Effective Properties of Multiphase Systems
• Bio-Aerosols and Bio-Systems
• Surface and Interfacial Phenomena
• Pollution Control Technology
• Clean Room Technology
• Multiphase Systems Applications
• Scaling Laws for Two-Phase Flow Phenomena
• Scaling Laws for Multiphase Flow
Information: D.M. Maron, Center for Technological Education Holon, POB 305, Holon 58102,
Israel, (972) 3-502 6501, Fax (972) 3-502 6510, e-mail: barad_r@barley.cteh.ac.il,
http://ichmt.me.metu.edu.tr/upcoming-meetings/MFTP-00/announce.html
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NOVEMBER 5-10, 2000

UNITED ENGINEERING FOUNDATION CONFERENCE ON LEAN COMBUSTION TECHNOLOGY AND
CONTROL
Santa Fe NM.

Information: United Engineering Foundation, Meetings Department, Three Park Avenue,
27th Floor, New York, NY 10016, (212) 591-7836, Fax (212) 591-7441, e-mail: engfnd@aol.com
http://www.engfnd.org/engfnd/conf.html, or from D. Dunn-Rankin, University of California at
Irvine, CA, or R.K. Cheng, Lawrence Berkeley National Laboratory.

NOVEMBER 12-17, 2000

ANNUAL MEETING OF THE AMERICAN INSTITUTE OF CHEMICAL ENGINEERS
Los Angeles, CA.

Information: Meetings Department, American Institute of Chemical Engineers, United
Engineering Center, 3 Park Avenue, New York, NY 10016, (212) 591-7325, Fax (212) 591-8894,
e-mail: meetmail@aiche.org, http://www.aiche.org

NOVEMBER 13-18, 2000

EASTERN ANALYTICAL SYMPOSIUM OF THE AMERICAN CHEMICAL SOCIETY
Somerset NJ.

Information: S. Gold, Eastern Analytical Symposium, P.O. Box 633, Montchanin, DE 19710,
(302) 738-6218, Fax (302) 738-5275, Web Site: http://www.eas.org

NOVEMBER 19-21, 2000

DIVISION OF FLUID DYNAMICS MEETING OF THE AMERICAN PHYSICAL SOCIETY
Washington DC.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

NOVEMBER 19-23, 2000

4th EUROMECH FLUID MECHANICS CONFERENCE
Eindhoven, The Netherlands.

Information: M.C.J. Tielemans, Fluid Dynamics Laboratory, Department of Physics,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
e-mail: info@efmc2000.tue.nl, http://www.EFMC2000.TUE.NL

NOVEMBER 27-DECEMBER 1, 2000

FALL MEETING OF THE MATERIALS RESEARCH SOCIETY
Boston MA.

Information: Materials Research Society, Meetings Department, 506 Keystone Drive,
Warrendale, PA 15086, (724) 779-3003, Fax (724) 779-8313, http://www.mrs.org
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♦ NOVEMBER 28 - DECEMBER 1, 2000

2000 CHINA INTERNATIONAL ENVIRONMENT, RENEWABLES AND ENERGY EFFICIENCY EXHIBITION
AND CONFERENCE
Beijing, China.

Information: CERE'2000 Secretariat, 1 Sandaojie, Jianguomenwai, Beijing 100022, PR China,
(86) 10-6515-7760/5027, Fax (86) 10-6515-8442, e-mail: cisc@midwest.com.cn, web:
www.ciscexpo.orgcn.net

DECEMBER 3-9, 2000

6th RIO SYMPOSIUM ON ATOMIC SPECTROMETRY
Concepcion and Pucon, Chile.

Information: C.G. Bruhn, Departamento de Analisis Instrumental, Facultad de Farmacia,
Universidad de Concepcion, P.O. Box 237, Concepcion, Chile, (56) 41-204252, Fax
(56) 41-231903, e-mail: cbruhn@udec.cl, http://www.udec.cl/6riosymp/

♦ DECEMBER 4-6, 2000

21st CENTURY EMISSIONS TECHNOLOGY
London UK.

Information: S. Love, Conferences and Events Department C588, Institution of Mechanical
Engineers, 1 Birdcage Walk, London SW1H 9JJ, 44(0) 20-7973-1312, Fax 44(0) 20-7222-9881,
e-mail: s_love@imeche.org.uk, web: www.imeche.org.uk

DECEMBER 6-8, 2000

JOINT 52nd SOUTHEAST/56th SOUTHWEST REGIONAL MEETING OF THE AMERICAN CHEMICAL
SOCIETY
New Orleans LA.

Information: A. Pepperman, SRRC, USDA-ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA
70179, (208) 286-4510, Fax (208) 286-4367, e-mail: abpep@nola.srrc.usda.gov

DECEMBER 14-19, 2000

INTERNATIONAL CHEMICAL CONGRESS OF PACIFIC BASIN SOCIETIES
Honolulu HI.

Information: Meetings Department, American Chemical Society, 1155 - 16th Street, NW,
Washington, DC 20036, (202) 872-4396, Fax (202) 872-6128, e-mail: natlmtgs@acs.org
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JANUARY 8-11, 2001

39th AIAA AEROSPACE SCIENCES MEETING AND EXHIBIT
Reno NV.

Information: S.X. Ying, MC 078-0421, The Boeing Company, 2401 E. Wardlow Rd., Long
Beach, CA 90807, (562) 982-2113, Fax (562) 496-6647, e-mail: susan.x.ying@boeing.com,
http://www.aiaa.org

JANUARY 14-19, 2001

GORDON RESEARCH CONFERENCE ON MOLECULAR ENERGY TRANSFER
Harbortown Resort, Ventura CA.

Information: J. Bowman, Department of Chemistry, Emory University, 1515 Pierce Drive,
Atlanta, GA 30322, e-mail: bowman@euch3g.chem.emory.edu, http://www.grc.uri.edu

♦ JANUARY 14-19, 2001

15th WINTER FLUORINE CONFERENCE
St. Petersburg Beach FL.

Information: G.B. Hammond, Department of Chemistry, University of Massachusetts,
Dartmouth, MA 02747, (508) 999-8865, Fax (508) 910-6918, e-mail: ghammond@umassd.edu;
W.B. Farnham, DuPont Central R&D, Experimental Station, P.O. Box 80328, 328/205,
Wilmington, DE 19880, (302) 695-2459, Fax (302) 695-9799, e-mail:
william.b.farnham@usa.dupont.com

♦ JANUARY 19-22, 2001

13th SANIBEL CONFERENCE ON MASS SPECTROMETRY: INFORMATICS AND MASS SPECTROMETRY
Sanibel Island FL.

Information: American Society for Mass Spectrometry, 1201 Don Diego Avenue, Santa Fe, NM
87505, (505) 989-4517, Fax (505) 989-1073, e-mail: asms@asms.org

♦ JANUARY 20-26, 2001

PHOTONICS WEST: OPTOELECTRONICS 2001, LASE 2001, BIOS 2001 AND ELECTRONICS IMAGING
2001
San Jose CA.

Information: Meetings Department, SPIE, P.O. Box 10, Bellingham, WA 98227, (360) 676-3290,
Fax (360) 647-1445, e-mail: spie@spie.org, http://www.spie.org

FEBRUARY 4-8, 2001

EUROPEAN WINTER CONFERENCE ON PLASMA SPECTROCHEMISTRY
Lillehammer, Norway.

Information: Y. Thomassen, NIOH, P.O. Box 8149 DEP, Oslo, Norway, N-0033,
(47) 23-19 53 20, Fax (47) 23-19 52 06.
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♦ FEBRUARY 15-20, 2001

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE ANNUAL MEETING AND SCIENCE
INNOVATION EXHIBITION
San Francisco CA.

Information: AAAS Meetings Office, 1200 New York Ave., N.W., Washington, DC 20005,
(202) 326-6450, Fax (202) 289-4021, e-mail: aaasmeeting@aaas.org, website:
http://www.aaas.org/meetings

FEBRUARY 18-23, 2001

GORDON RESEARCH CONFERENCE ON CHEMICAL REACTIONS AT SURFACES
Harbortown Resort, Ventura CA.

Information: J.C. Hemminger, Department of Chemistry, University of California, Irvine, CA
92697, e-mail: jchemmin@uci.edu, http://www.grc.uri.edu

FEBRUARY 25 - MARCH 2, 2001

GORDON RESEARCH CONFERENCE ON GASEOUS IONS
Ventura Beach Hotel, Ventura CA.

Information: P. Armentrout, Chemistry Department, 315 S. 1400 E. Rm 2020, University of
Utah, Salt Lake City, UT 84112, (801) 581-7885, Fax (801) 581-8433, e-mail:
armentrout@chemistry.utah.edu, http://www.grc.uri.edu/programs/2001/gaseous htm

MARCH 4-8, 2001

THE PITTSBURGH CONFERENCE, PITTCON 2001
New Orleans LA.

Information: The Pittsburgh Conference, 300 Penn Center Boulevard, Suite 332, Pittsburgh, PA
15235, (412) 825-3220, Fax (412) 825-3224, e-mail: pittconinfo@pittcon.org, http://www.pittcon.org/

MARCH 5-8, 2001

SOCIETY OF AUTOMOTIVE ENGINEERS WORLD CONGRESS
Detroit MI.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA
15096, (724) 776-1830, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org

MARCH 11-16, 2001

GORDON RESEARCH CONFERENCE ON MODERN DEVELOPMENTS IN THERMODYNAMICS
Ventura CA.

Information: R.S. Berry, Department of Chemistry, University of Chicago, 5735 South Ellis
Avenue, Chicago, IL 60637, e-mail: berry@rainbow.uchicago.edu, http://www.grc.uri.edu
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MARCH 12-16, 2001

ANNUAL MARCH MEETING OF THE AMERICAN PHYSICAL SOCIETY
Seattle WA.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

MARCH 25-30, 2001

199th NATIONAL MEETING OF THE ELECTROCHEMICAL SOCIETY
Washington DC.

Information: The Electrochemical Society, Inc., Meetings Department, 10 South Main Street,
Pennington, NJ 08534, (609) 737-1902, Fax (609) 737-2743, e-mail: ecs@electrochem.org,
http://www.electrochem.org/meetings/199/meet.html

♦ MARCH 25-28, 2001

2nd JOINT MEETING OF THE US SECTIONS OF THE COMBUSTION INSTITUTE
Oakland CA.

Topics will Include:
• Engine and Industrial Combustion
• Combustion Emissions
• Droplet and Spray Combustion
• Combustion Diagnostics
• Modeling and Numerical Simulation
• Chemical Kinetics
Information and Abstracts to W.J. Pitz, WSS/CI Secretary, L-370, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94551, (925) 422-7730, Fax (925) 423-0909,
e-mail: pitz@llnl.gov
Deadline: 200 Word Abstract to be Submitted Preferably by e-mail by December 15, 2000.
5-Page Papers Due by March 23, 2001.

MARCH 25-30, 2001

CONFERENCE ON STATIONARY SOURCE SAMPLING AND ANALYSIS FOR AIR POLLUTANTS XXV
Destin FL.

Information: B.K. Hickernell, United Engineering Foundation, Three Park Ave., 27th Floor,
New York, NY 10016, (212) 591-7836, Fax (212) 591-7441, e-mail: engfnd@aol.com,
http://www.engfnd/engfnd/1aw.html



13

♦ APRIL 1-5, 2001

221st NATIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
San Diego CA.

Division of Fuel Chemistry:
• Reaction Mechanisms in Fuel Processing

P.F Britt, Chemistry Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN
37831, (423) 574-5029, Fax (423) 576-5235, e-mail: brittpf@ornl.gov

• Coal Bed Methane
P.C. Thakur, Consol Inc., R&D, 1027 Little Indian Creek Road, Morgantown, WV 26501, (304)
983-3207, Fax (304) 983-3209, e-mail: promodthakur@consolcoal.com

• Nitrogen Chemistry in Coal Utilization
M.A. Wojtowicz, Advanced Fuel Research Inc., 87 Church Street, East Hartford, CT 06108,
(860) 528-9806 ext 142, Fax (860) 528-0648, e-mail: marek@afrinc.com

• Carbon Products for Environmental Applications
A. Lizzio, Illinois State Geological Survey, 615 East Peabody Drive, Champaign, IL 61801,
(217) 244-4985, Fax (217) 333-8566, e-mail: lizzio@geoserv.isgs.uiuc.edu

• Fuels of the Future: Heavy Oil & Hydrogen for Fuel Cells
R. Khan, Texaco Upstream Technology, 3901 Briar Park, Houston, TX 77042, (713) 954-6238,
Fax (713) 954-6113, e-mail: khanmr@texaco.com

• Environmental Challenges for Fossil Fuel Combustion
M.M. Maroto-Valer, Pennsylvania State University, Energy Institute, 405 Academic Activities
Building, University Park, PA 16802, (814) 863-8265, Fax (814) 863-8892, e-mail:
mmm23@psu.edu

• Solid Fuel Chemistry
S.V. Pisupati, Department of Energy & Geo-Environmental Engineering, Pennsylvania State
University, 124 Hosler Building, University Park, PA 16802, (814) 865-0874, Fax (814) 865-
3248, e-mail: sxp17@psu.edu

Division of Physical Chemistry:
• Accurate Description of Low-lying Molecular States & Potential Energy Surfaces

K.G. Dyall, Thermosciences Institute, NASA Ames Research Center, Mail Stop 230-3, Moffett
Field, CA 94035, (650) 604-6361, Fax (650) 604-0350, e-mail: dyall@pegasus.arc.nasa.gov;
M.R. Hoffmann, Department of Chemistry, University of North Dakota, (701) 777-2742,
e-mail: Mark.Hoffmann@mail.chem.und.nodak.edu

• Methods for Addressing Time- & Length-Scale Problems in Molecular Simulations
M. Challacombe, Theoretical Division, Los Alamos National Laboratory, Group T-12, Mail
Stop B268, Los Alamos, NM 87545, (505) 665-5905, Fax (505) 665-3909, e-mail:
MChalla@T12.LANL.Gov

• Molecular Photoelectron Spectroscopy
P.M. Weber, Chemistry Department, Brown University, 324 Brook St., Providence, RI 02912,
(401) 863-3767, Fax (401) 863-2594, e-mail: peter_weber@brown.edu; S.T. Pratt,
CHM-Chemistry Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439,
e-mail: stpratt@anl.gov

• Strong Field Chemistry: Molecules & Clusters in Intense Laser Fields
R. Levis, Department of Chemistry, Wayne State University, Detroit, MI 48202, (313) 577-
2597, e-mail: levis@chem.wayne.edu; A.W. Castleman Jr., Departments of Chemistry and
Physics, Pennsylvania State University, (814) 863-3583, Fax (814) 863-5235, e-mail:
awc@psu.edu



14

APRIL 16-20, 2001

SPRING MEETING OF THE MATERIALS RESEARCH SOCIETY
San Francisco CA.

Information: Materials Research Society, Meetings Department, 506 Keystone Drive,
Warrendale, PA 15086, (724) 779-3003, Fax (724) 779-8313, http://www.mrs.org

APRIL 16-20, 2001

XIII CARIBBEAN CONFERENCE ON CHEMISTRY AND CHEMICAL ENGINEERING
Havana, Cuba.

Information: A.J. Nunez Selles, Sociedad Cubana de Quimica, Ave 21&200, Atabey, Apdo.
16042, Havana, Cuba, CP 11600, (537) 218-178, Fax (537) 336-471, cqf@infomed.sld.cu

APRIL 23-27, 2001

APRIL NATIONAL MEETING OF THE AMERICAN PHYSICAL SOCIETY
Washington DC.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

APRIL 28 - MAY 1, 2001

2001 APRIL MEETING OF THE AMERICAN PHYSICAL SOCIETY
Washington DC.

Information:  American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

APRIL 29-MAY 2, 2001

INTERNAL COMBUSTION ENGINE DIVISION SPRING TECHNICAL CONFERENCE OF THE AMERICAN
SOCIETY OF MECHANICAL ENGINEERS
Philadelphia PA.

Information: Meetings Department, American Society for Mechanical Engineers, 345 E. 47th
Street, New York, NY 10017, (212) 591-7054, Fax (212) 705-7143, http://www.asme.org

MAY 6-11, 2001

CLEO/QELS 2001
Baltimore MD.

Information: Optical Society of America, Meetings Department, 2010 Massachusetts Ave NW,
Washington, DC 20036, (202) 223-0920, e-mail:  confserv@osa.org, http://www.osa.org/mtg_conf
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MAY 7-9, 2001

CEC/SAE SPRING FUELS AND LUBRICANTS MEETING AND EXPOSITION
Orlando FL.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA
15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org

MAY 13-16, 2001

16th INTERNATIONAL CONFERENCE ON FLUIDIZED BED COMBUSTION
Reno NV.

Information:  Meetings Department, American Society for Mechanical Engineers, 345 E. 47th
Street, New York, NY 10017, (212) 705-7037, Fax (212) 705-7143, http://www.asme.org

MAY 20-25, 2001

FLUIDIZATION X
Beijing, China.

Information: United Engineering Foundation, Meetings Department, Three Park Avenue,
27th Floor, New York, NY 10016, (212) 591-7836, Fax (212) 591-7441,
http://www.engfnd.org/engfnd/conf.html

MAY 20-25, 2001

2nd INTERNATIONAL SYMPOSIUM ON ADVANCES IN COMPUTATIONAL HEAT TRANSFER
Cairns, Australia.

Information: F. Arinc, Secretary-General, ICHMT, Mechanical Engineering Department,
Middle East Technical University, 06531 Ankara, Turkey, (90) 312-210-1429, Fax (90) 312-
210-1331, arinc@metu.edu.tr, http://ichmt.me.metu.edu.tr

MAY 20-25, 2001

10th INTERNATIONAL CONFERENCE ON FLUIDIZATION: FLUIDIZATION FOR SUSTAINABLE
DEVELOPMENT
Beijing, China.

Information: United Engineering Foundation, Meetings Department, Three Park Avenue,
27th Floor, New York, NY 10016, (212) 591-7836, Fax (212) 591-7441,
http://www.engfnd.org/engfnd/conf.html

♦ MAY 27-31, 2001

49th ASMS CONFERENCE ON MASS SPECTROMETRY AND ALLIED TOPICS
Chicago IL.

Information: American Society for Mass Spectrometry, 1201 Don Diego Avenue, Santa Fe, NM
87505, (505) 989-4517, Fax (505) 989-1073, e-mail: asms@asms.org
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MAY 27-JUNE 1, 2001

4th INTERNATIONAL CONFERENCE ON MULTIPHASE FLOW
New Orleans LA.

Information: E.E. Michaelides, School of Engineering, Tulane University, New Orleans, LA
70118, e-mail: icmf@mailhost.tcs.tulane.edu, http://mail.eng.lsu.edu/icmf.2001/
Deadline: Abstracts Due by July 1, 2000

♦ MAY 29 - JUNE 1, 2001

ASME FLUIDS ENGINEERING SUMMER MEETING: SYMPOSIUM ON SEPARATED AND COMPLEX
FLOWS III
New Orleans LA.

Information: B.E. Thompson, Department of Mechanics and Aerodynamics, Jonssen
Engineering Center 2049, Rensselaer Polytechnic Institute, Troy, NY 12180, (518) 276-6989,
Fax (518) 276-6025, e-mail: thompson@rpi.edu

MAY 30-JUNE 1, 2001

35th MIDDLE ATLANTIC REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Baltimore MD.

Information: L.J. Boucher, Towson University, Department of Chemistry, 8000 York Road,
Towson, MD 21252-0001, (410) 830-3057, Fax (410) 830-4265, e-mail: lboucher@towson.edu

♦ JUNE 3-6, 2001

SYMPOSIUM ON TURBULENT MIXING AND COMBUSTION
Kingston, Ontario, Canada.

Topics Will Include:
• Turbulent Mixing
• Mixing Dominated by Combustion
• Simulation and Modeling of Turbulent Mixing and Combustion
• Control of Mixing and Combustion
• Applications
Information: A. Pollard, Department of Mechanical Engineering, Queen's University at
Kingston, ON, Canada K7L 3N6, (613) 533-2569, Fax (613) 533-6489, e-mail:
pollard@me.queensu.ca, http://me.queensu.ca/~iutam
Deadline: Abstracts Due by February 1, 2001.

JUNE 4-7, 2001

46th ASME INTERNATIONAL GAS TURBINE AND AEROENGINE TECHNICAL CONGRESS, EXPOSITION
AND USERS SYMPOSIUM
New Orleans LA.

Information: A. Layne, National Energy Technology Center, DOE, 3610 Collins Ferry Road,
MS CO2, Morgantown, WV 26505, (304) 285-4603, Fax (304) 285-4469, e-mail:
abbie.layne@netl.doe.gov, http://www.asme.org
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JUNE 10-12, 2001

35th ASME NATIONAL HEAT TRANSFER CONFERENCE
Anaheim CA.

Information: C.B. Panchal, Energy Concept Co., Annapolis, MD 21401, (410) 266-6521, Fax
(410) 266-6539, e-mail: cpanchal@aol.com, http://www.asme.org

JUNE 10-15, 2001

3rd INTERNATIONAL SYMPOSIUM ON RADIATIVE TRANSFER
Antalya, Turkey.

Information: F. Arinc, Secretary-General, ICHMT, Mechanical Engineering Department,
Middle East Technical University, 06531 Anakara, Turkey, (90) 312-210-5214, Fax (90) 312-
210-1331, http://ichmt.me.metu.edu.tr
Deadline: 4 Copies of Manuscript Due by December 15, 2000.

JUNE 11-13, 2001

JOINT CENTRAL/GREAT LAKES REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Grand Rapids MI.

Information: R.J. McCabe, Parke-Davis Pharmaceuticals, 188 Howard Ave., Holland, MI
49424, (616) 392-2375 ext. 2386, Fax (616) 392-8916, e-mail: Richard.McCabe@wl.com

JUNE 11-14, 2001

19th AIAA APPLIED AERODYNAMICS CONFERENCE
15th AIAA COMPUTATIONAL FLUID DYNAMICS CONFERENCE
31st AIAA FLUID DYNAMICS CONFERENCE
32nd AIAA PLASMADYNAMICS AND LASERS CONFERENCE
35th AIAA THERMOPHYSICS CONFERENCE
Anaheim CA.

Information: Meetings Department, American Institute of Aeronautics and Astronautics, 1801
Alexander Bell Drive, Suite 500, Reston, VA 20191, (703) 264-7500 or (800) 639-2422, e-mail:
custserv@aiaa.org, http://www.aiaa.org

JUNE 13-15, 2001

JOINT 33rd CENTRAL/33rd GREAT LAKES REGIONAL MEETING OF THE AMERICAN CHEMICAL
SOCIETY
Grand Rapids MI.

Information: R.J. McCabe, Parke-Davis, 188 Howard Avenue, Holland, MI 49423, (616) 392-
2375 ext 2386, Fax (616) 392-8916, e-mail: Richard.McCabe@wl.com
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JUNE 13-16, 2001

56th NORTHWEST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Seattle WA.

Information: S. Jackels, Department of Chemistry, Seattle University, 900 Broadway, Seattle,
WA 98122, (206) 296-5946, Fax (206) 296-5786, e-mail: sjackels@seattleu.edu

JUNE 17-22, 2001

GORDON RESEARCH CONFERENCE ON ATMOSPHERIC CHEMISTRY
Salve Regina University, Newport RI.

Information: S.P. Sander, Jet Propulsion Laboratory, Mail Stop 183-901, 4800 Oak Grove
Drive, Pasadena, CA 91109, e-mail: stanley.sander@jpl.nasa.gov, http://www.grc.uri.edu

JUNE 23-28, 2001

GORDON RESEARCH CONFERENCE ON ANALYTICAL CHEMISTRY
Connecticut College, New London CT.

Information: P.W. Bohn, Department of Chemistry, University of Illinois, 600 South Mathews,
Urbana, IL 61801, e-mail: bohn@aries.scs.uiuc.edu, http://www.grc.uri.edu

JUNE 24-27, 2001

30th NORTHEAST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Durham NH.

Information: H. Mayne, Chemistry Department, University of New Hampshire, (603) 862-1550,
e-mail: howard.mayne@unh.edu

♦ JUNE 24-27, 2001

3rd ASIA-PACIFIC CONFERENCE ON COMBUSTION
Seoul, Korea.

Information: In-S. Jeung, School of Mechanical and Aerospace Engineering, Seoul National
University, San 56-1, Shinrim-Dong, Kwanak-Ku, Seoul, 151-742, Korea, 82-2-880-7387, Fax
82-2-887-2662, e-mail: enjis@plaza.snu.ac.kr, http://aspacc.snu.ac.kr

JUNE 24-28, 2001

ANNUAL MEETING OF THE AIR AND WASTE MANAGEMENT ASSOCIATION
Orlando FL.

Information: Air and Waste Management Association, Member Services, One Gateway Center,
Third Floor, Pittsburgh, PA 15222, (800) 270-3444 or (412) 232-3444, Fax (412) 232-3450,
http://www.awma.org
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JULY 1-6, 2001

GORDON RESEARCH CONFERENCE ON LASER DIAGNOSTICS IN COMBUSTION
Mount Holyoke College, South Hadley MA.

Information: J.B. Jeffries, Molecular Physics Laboratory, SRI International, 333 Ravenswood
Ave., Menlo Park, CA 94025, (650) 859-6341, Fax (650) 859-6196, e-mail: jay.jeffries@sri.com

JULY 8-11, 2001

37th AIAA/ASME/SAE/ASEE JOINT PROPULSION CONFERENCE
Salt Lake City UT.

Information: Meetings Department, American Institute of Aeronautics and Astronautics, 1801
Alexander Bell Drive, Suite 500, Reston, VA 20191, (703) 264-7500 or (800) 639-2422, e-mail:
custserv@aiaa.org, http://www.aiaa.org

JULY 8-13, 2001

GORDON RESEARCH CONFERENCE ON GRAVITATIONAL EFFECTS IN PHYSICO-CHEMICAL SYSTEMS
Colby-Sawyer College, New London NH.

Information: P.H. Steen, Department of Chemical Engineering, Cornell University, 346 Olin
Hall, Ithaca, NY 14853, e-mail: phs7@cornell.edu, http://www.grc.uri.edu

JULY 8-13, 2001

GORDON RESEARCH CONFERENCE ON PHOTOIONS, PHOTOIONIZATION AND PHOTODETACHMENT
Williams College, Williamstown MA.

Information: M. Johnson, Department of Chemistry, Yale University, P.O. Box 208107, New
Haven, CT 06520, e-mail: Mark.johnson@yale.edu, http://www.grc.uri.edu

JULY 9-11, 2001

COMBUSTION CHEMISTRY: ELEMENTARY REACTIONS TO MACROSCOPIC PROCESSES: FARADAY
DISCUSSION NUMBER 119
Leeds, UK.

Joint Meeting with the British Section of the Combustion Institute.
Information: M. Pilling, School of Chemistry, University of Leeds, Leeds UK, e-mail:
m.j.pilling@chem.leeds.ac.uk, http://www.chem.leeds.ac.uk

♦ JULY 18-24, 2001

22nd INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS
Santa Fe NM.

Information: S. Datz, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN,
(865) 574-4984, Fax (865) 574-1118, e-mail: icpeac@phy.ornl.gov,
http://icpeac2001.phy.ornl.gov.html
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JULY 22-27, 2001

GORDON RESEARCH CONFERENCE ON HIGH TEMPERATURE CORROSION
Colby-Sawyer College, New London NH.

Information: P.Y. Hou, Lawrence Berkeley National Laboratory, Materials Science Division, 1
Cyclotron Road, MS 62-203, Berkeley, CA 94720, e-mail: pyhou@lbl.gov,
http://www.grc.uri.edu

JULY 29-AUGUST 2, 2001

36th INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE
Savannah GA.

Information: Meetings Department, American Society for Mechanical Engineers, 345 E. 47th
Street, New York, NY 10017, (212) 591-7057, Fax (212) 705-7143, http://www.asme.org

♦ JULY 29-AUGUST 3, 2001

18th INTERNATIONAL COLLOQUIUM ON THE DYNAMICS OF EXPLOSIONS AND REACTIVE SYSTEMS
Seattle WA.

Information: ICDERS Secretariat, Engineering Professional Programs, University of
Washington, 10303 Meridian Ave North #301, Seattle, WA 98133.
Deadline: Submit Abstracts of Papers and Posters by February 1, 2001 to J.R. Bowen,
University of Washington, 10303 Meridian Ave N #301, Seattle, WA 98133, (206) 616-8128,
Fax (206) 543-2352, e-mail: icders@engr.washington.edu

AUGUST 6-10, 2001

INTERNATIONAL CONGRESS ON ANALYTICAL SCIENCES 2001
Yokohama, Japan.

Information: T. Sawada, Chairman, Department of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 113-8656, (81) 3-5841-7236, ext. 7237, Fax (81)
3-5841-6037, e-mail: icas2001@laser.t.u-tokyo.ac.jp, http://wwwsoc.nacsis.ac.jp/jsac/icas2001/

AUGUST 19-24, 2001

1st INTERNATIONAL CONFERENCE ON ADVANCED VIBRATIONAL SPECTROSCOPY
Turku, Finland.

Information: M. Hotokka, Department of Physical Chemistry, Abo Akademi University,
FIN-20500 Turku, Finland, 358-2-215-4295, Fax 358-2-215-4706, e-mail: icavs@abo.fi,
http://www.abo.fi/icavs
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AUGUST 19-24, 2001

GORDON RESEARCH CONFERENCE ON PHOTOACOUSTIC AND PHOTOTHERMAL PHENOMENA
Queen's College, Oxford UK.

Information: D. Fournier, UPMC/CNRS, Laboratoire d'Instrumentation, 10 Rue Vaugelin, Paris
75005, France, e-mail: fournier@optique.espci.fr, http://www.grc.uri.edu

AUGUST 20-24, 2001

13th INTERNATIONAL CONFERENCE ON FOURIER TRANSFORM SPECTROSCOPY
Turku, Finland.

Information: M. Hotokka, Department of Physical Chemistry, Abo Akademi University, FIN-
20500 Turku, Finland, (358) 2-265-4295, Fax (358) 2-265-4706, e-mail: icofts@abo.fi,
http://www.abo.fi/icofts

AUGUST 26-30, 2001

222nd NATIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Chicago IL.

Division of Fuel Science:
• Cofiring or Coprocessing Coal & Biomass

J.T. Cobb, Jr., University of Pittsburgh, Chemical Engineering Department, 1137 Benedum
Hall, Pittsburgh, PA 15261, (412) 624-7443, Fax (412) 624-9639, e-mail:
cobb@engrng.pitt.edu

• Computer Modeling in Fuel Chemistry
J. Mathews, Pennsylvania State University, Energy & Geo-Environmental Engineering
Department, 151 Hosler Building, University Park, PA 16802, (814) 863-6213, Fax (814) 865-
3248, e-mail: jpm10@psu.edu; M.T. Klein, Rutgers, State University of New Jersey, School of
Engineering, Office of the Dean, B204, 98 Bret Road, Piscataway, NJ 08854-8058, (732) 445-
4453, Fax (732) 445-7067, e-mail: mtklein@jove.rutgers.edu

• Fine Particulate (PM2.5) Formation & Emissons from Fuel Combustion
C.M. White, Department of Energy, Federal Energy Technology Center, Mail Stop 94-212,
P.O. Box 10940, Pittsburgh, PA 15236, (412) 386-5808, Fax (412) 386-4158, e-mail:
cwhite@fetc.doe.gov

• Catalysis in Fuel Processing for Fuel Cell Application
S.P. Katikaneni, Fuel Cell Energy, Advanced Technology Group, 3 Great Pasture Road,
Danbury, CT 06813, (203) 825-6067, Fax (203) 825-6150, e-mail: skatikaneni@fce.com; A.M.
Gaffney, DuPont Central R&D, Experimental Station, P.O. Box 80262, Wilmington, DE
19880, (302) 695-1800, Fax (302) 695-8347, e-mail: anne.m.gaffney@usa.dupont.com; C.
Song, Pennsylvania State University, Energy & Geo-Environmental Engineering, 206 Hosler
Building University Park, PA 16802, (814) 863-4466, Fax (814) 865-3248, e-mail:
csong@psu.edu

• Value-Added Carbon Products from Fossil Fuels
F. Rusinko, Pennsylvania State University, Energy Institute 407 Academic Activities
Building, University Park, PA 16802, (814) 863-8085, Fax (814) 865-8892, e-mail:
fjr4@psu.edu; J.W. Zondlo, College of Engineering & Mineral Resources, Department of
Chemical Engineering, P.O. Box 6102, Morgantown, WV 26506; B. Tomer, Department of
Energy, Federal Energy Technology Center, 3610 Collins Ferry Road, P.O. Box 88,
Morgantown, WV 26507.
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• Mercury Emissions from Coal
K. Katrinak, Microbeam Technologies, 1521-24th Avenue S., Suite B-2, Grand Forks, ND
58201, (701) 772-4482, Fax (701) 772-4099, e-mail: katrinak@badlands.nodak.edu; K.
Galbreath, University of North Dakota, Energy & Environmental Research Center, P.O. Box
9018, Grand Forks, ND 58202, (701) 777-5127, Fax (701) 777-5181, e-mail:
kgalbreath@eerc.und.nodak.edu

• General Fuel Chemistry
S.V. Pisupati, Pennsylvania State University, Energy & Geo-Environmental Engineering, 124
Hosler Building, University Park, PA 16802, (814) 865-0874, Fax (814) 865-3248, e-mail:
sxp17@psu.edu

Information: Meetings Department, American Chemical Society, 1155 - 16th Street, NW,
Washington, DC 20036, (202) 872-4396, Fax (202) 872-6128, e-mail: natlmtgs@acs.org
Deadline: Electronic Abstract Submissions (preferred) or 4 Hard Copies of 150-word Abstract
(original on ACS Abstract Form) Due to Symposium Organizers by April 15, 2001. Preprints
Due to Symposium Chairs by May 15, 2001.

SEPTEMBER 2-7, 2001

200th NATIONAL MEETING OF THE ELECTROCHEMICAL SOCIETY AND THE 52nd MEETING OF THE
INTERNATIONAL SOCIETY OF ELECTROCHEMISTRY
San Francisco CA.

Information: The Electrochemical Society, Inc., Meetings Department, 10 South Main Street,
Pennington, NJ 08534, (609) 737-1902, Fax (609) 737-2743, e-mail: ecs@electrochem.org,
http://www.electrochem.org/meetings/198/meet.html

SEPTEMBER 23-27, 2001

52nd SOUTHEAST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Savannah GA.

Information: G. Novotnak, Kemira Pigments, 104 Carlton Road, Savannah, GA 31410,
(912) 652-1290, Fax (912) 897-1163, e-mail: george.novotnak@kemira.com

SEPTEMBER 23-27, 2001

6th WORLD CONGRESS OF CHEMICAL ENGINEERING: A NEW CENTURY OF CHEMICAL ENGINEERING
Melbourne, Australia.

Information: Meetings Department, American Institute of Chemical Engineers, United
Engineering Center, 3 Park Avenue, New York, NY 10016, (212) 591-7325 or (800) 242-4363,
Fax (212) 591-8894, e-mail: meetmail@aiche.org, http://www.aiche.org

SEPTEMBER 24-26, 2001

INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL MEETING OF THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS
Argonne IL.

Information: Meetings Department, American Society for Mechanical Engineers, 345 E. 47th
Street, New York, NY 10017, (212) 591-7054, Fax (212) 705-7143, http://www.asme.org
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SEPTEMBER 24-27, 2001

INTERNATIONAL SAE FALL FUELS AND LUBRICANTS MEETING AND EXPOSITION
San Antonio TX.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA
15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org

SEPTEMBER 24-28, 2001

5th WORLD CONFERENCE ON EXPERIMENTAL HEAT TRANSFER, FLUID MECHANICS AND
THERMODYNAMICS
Thessaloniki, Greece.

Information: G.P. Celata, Conference Chairman, ENEA Casaccia, Via Anguillarese 301, I-00060
S.M. Galeria, Rome, Italy, (39) 06-30483905, Fax (39) 06-30483026, e-mail:
celata@casaccia.enea.it, http://www.ing.unipi.it/exhft5
Deadline: Abstract Due by July 28, 2000

♦ SEPTEMBER 30-OCTOBER 5, 2001

11th INTERNATIONAL CONFERENCE ON COAL SCIENCE: EXPLORING THE HORIZONS OF COAL
San Francisco CA.

Information: D.A. Clarke, Power Technology, Radcliffe-on-Soar, Nottingham NG11 0EE,
England, (0) 115-936-2452, Fax (0) 115-936-2363, e-mail: dave.clarke@powertech.co.uk

OCTOBER 5-12, 2001

28th ANNUAL MEETING OF THE FEDERATION OF ANALYTICAL CHEMISTRY AND SPECTROSCOPY
SOCIETIES
Detroit MI.

Information: C. Lilly, Federation of Analytical Chemistry and Spectroscopy Societies,
1201 Don Diego Ave., Santa Fe, NM 87505, (505) 820-1648, Fax (505) 989-1073,
e-mail: jsjoberg@trail.com, http://facss.org/info.html

OCTOBER 10-13, 2001

36th MIDWEST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Lincoln NE.

Information: D. Berkowitz, Department of Chemistry, University of Nebraska, Lincoln, NE
68588-0304, (402) 472-2738, Fax (402) 472-9402, e-mail: dbb@unlinfo.edu
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OCTOBER 14-18, 2001

6th INTERNATIONAL SYMPOSIUM ON SELF PROPAGATING HIGH TEMPERATURE SYNTHESIS
Haifa, Israel.

Information: I. Gotman, Technion-Israel Institute of Technology, Department of Materials
Engineering, Technion, Haifa, Israel 32000, (972) 4-829-2112, Fax (972) 4-832-1978, e-mail:
gotman@techunix.technion.ac.il, http://www.technion.ac.il/technion/materials/conferences.html

OCTOBER 14-19, 2001

INTERNATIONAL SYMPOSIUM ON VISUALIZATION AND IMAGING IN TRANSPORT
Antalya, Turkey.

Information: F. Arinc, Secretary-General, ICHMT, Mechanical Engineering Department,
Middle East Technical University, 06531 Ankara, Turkey, (90) 312-210-1429, Fax (90) 312-
210-1331, arinc@metu.edu.tr, http://ichmt.me.metu.edu.tr

OCTOBER 16-19, 2001

57th SOUTHWEST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
San Antonio TX.

Information: S.T. Weintraub, Department of Biochemistry, University of Texas Health
Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284, (210) 567-4043, Fax (210) 567-
5524, e-mail: weintraub@uthscsa.edu

OCTOBER 23-26, 2001

36th WESTERN REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Ventura CA.

Information: R.W. Hurst, 9 Faculty Court, Thousand Oaks, CA 91360, (805) 492-7764, Fax
(805) 241-7149, e-mail: Alarwh@aol.com

♦ OCTOBER 28-31, 2001

37th WESTERN REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Santa Barbara CA.

Information: R.W. Hurst, Hurst & Associates, 9 Faculty Court, Thousand Oaks, CA 91360,
fax/phone (805) 492-7764, e-mail: alasrwh@aol.com

NOVEMBER 26-30, 2001

FALL MEETING OF THE MATERIALS RESEARCH SOCIETY
Boston MA.

Materials Research Society, Meetings Department, 506 Keystone Drive, Warrendale, PA 15086,
(724) 779-3003, Fax (724) 779-8313, e-mail: info@mrs.org
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NOVEMBER 28-30, 2001

2001 SAE SMALL ENGINE TECHNOLOGY CONFERENCE AND EXPOSITION
Pisa, Italy.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA
15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org
Submit your abstract of up to 500 words by November 2, 2000 to Karin Bolcshazy, SAE
International, 400 Commonwealth Drive, Warrendale, PA 15096, (724) 772-7179, Fax (724) 776-
1830, e-mail: karinb@sae.org
The abstract should include a tentative paper title, authors and co-authors (full names, position,
company address, email, telephone and fax numbers).

♦ DECEMBER 3-6, 2001

5th ASIA-OCEANIA SYMPOSIUM ON FIRE SCIENCE AND TECHNOLOGY
Callaghan, NSW, Australia.

Information: B.Z. Dlugogorski, Department of Chemical Engineering, The University of
Newcastle, Callaghan, NSW 2308 Australia, 61-2-4921-6176, Fax 61-2-4921-6920, e-mail:
cgbzd@alinga.newcastle.edu.au
Deadline: Submission of Full Papers by March 1, 2001.

♦ DECEMBER 9-14, 2001

14th AUSTRALASIAN FLUID MECHANICS CONFERENCE
Adelaide, Australia.

Information: 14th Australasian Fluid Mechanics Conference, Department of Mechanical
Engineering, The University of Adelaide, SA 5005, Australia, (61) 8-8303 5397,
Fax (61) 8-8303 4367, e-mail: afmc@mecheng.adelaide.edu.au, http://www.mecheng,
adelaide.edu.au/14afmc/14afmc.htm

♦ JANUARY 6-11, 2002

2nd MEDITERRANEAN COMBUSTION SYMPOSIUM
Sharm El-Shaikh, Egypt.

Information: M.S. Mansour, Department of Mechanical Engineering, The American
University in Cairo, Cairo, Egypt, Fax (202) 795-7565, e-mail: mansourm@aucegypt.edu

MARCH 18-22, 2002

MARCH MEETING OF THE AMERICAN PHYSICAL SOCIETY
Indianapolis IN.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org
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MARCH 18-22, 2002

PITTCON 2000:  THE PITTSBURGH CONFERENCE
New Orleans LA.

Information: The Pittsburgh Conference, 300 Penn Center Blvd., Suite 332, Pittsburgh, PA
15235, (412) 825-3220, Fax (412) 825-3224, e-mail: pittconinfo@pittcon.org, http://www.pitcon.org/

APRIL 7-12, 2002

223rd NATIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Orlando FL.

Information:  Meetings Department, American Chemical Society, 1155 - 16th Street, NW,
Washington, DC 20036, (202) 872-4396, Fax (202) 872-6128, e-mail: natlmtgs@acs.org

♦ APRIL 29-MAY 1, 2002

5th INTERNATIONAL WORKSHOP ON CATALYTIC COMBUSTION
Seoul, Korea.

Topics will Include:
• Kinetics and Transport Processes in Catalytic Combustion
• Development of High Temperature Materials for Catalytic Combustion
• Application of Catalytic Combustion in Industrial Commercial and Residential Burners
• Commercialization of Low Emission Gas Turbine Catalytic Combustor
Information: Sung June Cho, Secretary, 5 IWCC, Korea Institute of Energy Research, 71-2,
Jang-dong, Yusung-gu, Taejon 305-343, Korea, (82) 42-860-3613, Fax (82) 42-860-3133, e-mail:
sjcho@kier.re.kr
Deadline: Submit Extended Abstract by July 31, 2001.

♦ MAY 5-8, 2002

7th CIRCULATING FLUIDIZED BED CONFERENCE
Niagara Falls, Canada.

Information: AICUL Consulting, e-mail: aicul-con@home.com

♦ JUNE 20-22, 2002

57th NORTHWEST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY

Information: D. Cleary, Chemistry Department, Gonzaga University, Spokane, WA 99258,
(509) 323-6631, e-mail: cleary@gonzaga.edu
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♦ AUGUST 18-22, 2002

224th NATIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Boston MA.

Information: Meetings Department, American Chemical Society, 1155 - 16th Street, NW,
Washington, DC 20036, (202) 872-4396, Fax (202) 872-6128, e-mail: natlmtgs@acs.org

♦ OCTOBER 23-26, 2002

38th WESTERN REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
San Francisco CA.

Information: N.D. Byington, U.S. Customs Service Laboratory, 630 Sansome St., Room 1407,
San Francisco, CA 94111, (415) 705-4405 ext. 216, Fax (415) 705-4236, e-mail:
neal@byington.org

♦ NOVEMBER 13-17, 2002

53rd SOUTHEAST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Charleston SC.

Information: G.P. Meier, Department of Pharmaceutical Sciences, Medical University of
South Carolina, 280 Calhoun St., P.O. Box 250140, Charleston, SC 29425, (843) 792-8445, Fax
(843) 792-0759, e-mail: meiergp@musc.edu
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CURRENT BIBLIOGRAPHY RELEVANT TO
FUNDAMENTAL COMBUSTION

April 2000
Keith Schofield, ChemData Research, P.O. Box 40481

Santa Barbara, CA  93140, (805) 966-7768, Fax (805) 893-8797
e-mail: combust@mrl.ucsb.edu

http://www.ca.sandia.gov/CRF/Publications/CRB/CRB.html

1.  FUELS/SYNFUELS - GENERAL

85028. Bain, R.L., R.P. Overend and K.R. Craig, "Biomass-Fired Power
Generation," Fuel Processing Technol. 54, 1-16 (1998).

Biomass Fuels
Energy Resource
Potential

85029. Baxter, L.L., T.R. Miles, T.R. Miles Jr., B.M. Jenkins, T. Milne, D.
Dayton, R.W. Bryers and L.L. Oden, "The Behavior of Inorganic Material
in Biomass-Fired Power Boilers: Field and Laboratory Experiences," Fuel
Processing Technol. 54, 47-78 (1998).

Biomass
Combustion
Mineral Content
Power Boiler
Testing Experience

85030. Porteous, A., "Energy from Waste: A Wholly Acceptable Waste
Management Solution," Appl. Energy 58, 177-208 (1998).

Waste Combustion
Energy Source
Considerations

85031. Daskalopoulos, E., O. Badr and S.D. Probert, "Economic and
Environmental Evaluations of Waste Treatment and Disposal
Technologies for Municipal Solid Waste," Appl. Energy 58, 209-255
(1997).

Waste
Management
Assessments

85032. Bharadwaj, S.S., and L.D. Schmidt, "Catalytic Partial Oxidation of
Natural Gas to Syngas," Fuel Processing Technol. 42, 109-127 (1995).

Syngas Formation
CO,H2

Catalytic
Partial Oxidation
Natural Gas/Steam

85033. Edwards, J.H., and A.M. Maitra, "The Chemistry of Methane Reforming
with Carbon Dioxide and Its current and Potential Applications," Fuel
Processing Technol. 42, 269-289 (1995).

Synfuel Formation
CO,H2

CH4 /CO2 Reforming
Catalysts
Carbon Product
Overview

2.  LIQUEFACTION/GASIFICATION

85034. Holmen, A., O. Olsvik and O.A. Rokstad, "Pyrolysis of Natural Gas:
Chemistry and Process Concepts," Fuel Processing Technol. 42, 249-267
(1995).

Liquefaction/
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Natural Gas
Pyrolysis
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85035. Foulds, G.A., and B.F. Gray, "Homogeneous Gas Phase Partial Oxidation
of Methane to Methanol and Formaldehyde," Fuel Processing Technol.
42, 129-150 (1995).

Partial Oxidation
CH4

Liquefaction
CH3OH,HCHO
Formation

85036. Tabata, K., Y. Teng, Y. Yamaguchi, H. Sakurai and E. Suzuki,
"Experimental Verification of Theoretically Calculated Transition
Barriers of the Reactions in a Gaseous Selective Oxidation of
CH4 /O2 /NO2 ," J. Phys. Chem. A. Mol., Spectrosc., Kinetics 104, 2648-2654
(2000).
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Reaction Dynamics
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85037. Choudhary, V.R., A.M. Rajput, B. Prabhakar and A.S. Mamman, "Partial
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1807 (1998).
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85038. Deutschmann, O., and L.D. Schmidt, "Two-Dimensional Modeling of
Partial Oxidation of Methane on Rhodium in a Short Contact Time
Reactor," Symp. (Int.) Combust. Proc. 27, 2283-2291 (1998).
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85039. Hall, T.J., J.S.J. Hargreaves, G.J. Hutchings, R.W. Joyner and S.H.
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Oxidation of Methane," Fuel Processing Technol. 42, 151-178 (1995).

Partial Oxidation
CH4

Liquefaction
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85040. Chaouki, J., A. Gonzalez, C. Guy and D. Klvana, "Two-Phase Model for a
Catalytic Turbulent Fluidized Bed Reactor: Application to Ethylene
Synthesis," Chem. Eng. Sci. 54, 2039-2045 (1999).
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2-Phase Model

85041. Hijikata, K., K. Ogawa and N. Miyakawa, "Methanol Conversion from
Methane and Water Vapor by Electric Discharge (Effect of Electric
Discharge Process on Methane Conversion)," Heat Transfer - Asian
Research 28, 404-417 (1999).
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85042. Stiller, A.H., D.B. Dadyburjor, J.-P. Wann, D. Tian and J.W. Zondlo,
"Coprocessing of Agricultural and Biomass Waste with Coal," Fuel
Processing Technol. 49, 167-175 (1996).
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85043. Kim, J., S.B. Lalvani, C.B. Muchmore and B.A. Akash, "Coliquefaction of
Coal and Black Liquor to Environmentally Acceptable Liquid Fuels,"
Energy Sources 21, 839-847 (1999).
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Tires with Coal," Fuel Processing Technol. 46, 195-215 (1996).
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Catalytic
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85047. Warren, A., and M. El-Halwagi, "An Economic Study for the
Cogeneration of Liquid Fuel and Hydrogen from Coal and Municipal
Solid Waste," Fuel Processing Technol. 49, 157-166 (1996).
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Process

3. BURNERS

(See also Section 21 for Burner Emissions and Incinerator
Performance)

85048. Swithenbank, J., F. Boysan, P. Langston and F. Liu, "Radiation and
Combustion: Some Like It Hot!," pp. 233-246 in Heat Transfer 1994:
Proceedings of the 10th International Heat Transfer Conference, G.F.
Hewitt, ed., Held in Brighton, UK, August 1994, Volume 1. Keynote Papers,
Institution of Chemical Engineers, Rugby, Warwickshire UK (1994).

Boilers
CFD Modeling
Procedures
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85049. Brewster, B.S., S.M. Cannon, J.R. Farmer and F. Meng, "Modeling of
Lean Premixed Combustion in Stationary Gas Turbines," Prog. Energy
Combust. Sci. 25, 353-385 (1999).
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Considerations
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85056. Echigo, R., H. Yoshida, K. Tawata, M. Koda and K. Hanamura, "An
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pp. 173-178 in Heat Transfer 1994: Proceedings of the 10th International
Heat Transfer Conference, G.F. Hewitt, ed., Held in Brighton, UK, August
1994, Volume 3. External Forced Convection, Heat Transfer in
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Thermoelectric
Generating
Concept
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4.  COAL, PARTICLE COMBUSTION/PYROLYSIS

(See also Section 2 for Coal Liquefaction, Section 3 for Coal Burners
and Section 21 for Coal Combustion Emissions)

85067. Vassilev, S.V., and C.G. Vissileva, "Occurrence, Abundance and Origin of
Minerals in Coals and Coal Ashes," Fuel Processing Technol. 48, 85-106
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85081. Ilic, M.S., S.N. Oka and M.M. Radovanovic, "Experimental Investigation
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85088. Saade, R.G., and J.A. Kozinski, "Dynamics of Physical Characteristics of
Biowaste during Pyrolysis," J. Anal. Appl. Pyrolysis 45, 9-22 (1998).
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5.  SPRAY COMBUSTION

85091. Kalma, A., and J.B. Greenberg, "Special Features of the Combustion of a
Propagating Flame in a Polydisperse Fuel Spray Cloud," Int. J. Turbo Jet
Eng. 14, 201-216 (1997).
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Energy Combust. Sci. 25, 275-304, 689 (1999).
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(85390) Phase Doppler, Laser Diffraction Methods Compared Droplet Sizing

6.  METALS/PROPELLANTS/POLYMER COMBUSTION
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Ways to Monitor these Ultraquick Chemical Reactions," Scientific Am.
283, 44-47 (2000).
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Study of Unsteady Self Propagating Reactions in Multilayer Foils,"
Symp. (Int.) Combust. Proc. 27, 2459-2467 (1998).

Ni/Al
Multilayer Foils
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Solid Propellant
Acoustic
Oscillations/
Flame Interactions
Modeling
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85122. Kuklja, M.M., E.V. Stefanovich and A.B. Kunz, "An Excitonic
Mechanism of Detonation Initiation in Explosives," J. Chem. Phys. 112,
3417-3423 (2000).

RDX
Crystal Explosive
Detonation
Mechanism

85123. Chakraborty, D., R.P. Muller, S. Dasgupta and W.A. Goddard III, "The
Mechanism for Unimolecular Decomposition of RDX (1,3,5-Trinitro-1,3,5-
triazine), an ab Initio Study," J. Phys. Chem. A. Mol., Spectrosc., Kinetics
104, 2261-2272 (2000).

RDX
Unimolecular
Dissociation
Channels
Energies

85124. Parr, T., and D. Hanson-Parr, "RDX Ignition Flame Structure," Symp.
(Int.) Combust. Proc. 27, 2301-2308 (1998).

RDX
Ignition
Extinguishment
CN,OH,NO,NO2

Species Profiles
T,PIV
Measurements

(85152) Ignition Delays, Kinetic Modeling N2H3(CH3)/O2 /Ar

85125. Kellogg, D.S., B.E. Waymack, D.D. McRae and R.W. Dwyer, "Smolder
Rates of Thin Cellulosic Materials," J. Fire Sci. 15, 390-403 (1997).

Thin Cellulose
Smolder Rates
Ion Effects

85126. Bockhorn, H., A. Hornung and U. Hornung, "Stepwise Pyrolysis for Raw
Material Recovery from Plastic Waste," J. Anal. Appl. Pyrolysis 46, 1-13
(1998).

Plastics
Stepwise Pyrolysis
PVC,PS,PE
Products

85127. Bockhorn, H., J. Hentschel, A. Hornung and U. Hornung,
"Environmental Engineering: Stepwise Pyrolysis of Plastic Waste," Chem.
Eng. Sci. 54, 3043-3051 (1999).

Plastic Wastes
Pyrolysis
Stepwise Schemes
Mechanisms



13

85128. Fujishige, S., N. Maebashi and M. Miyauchi, "Both Nylon and PET Fibers
Burn Continuously under Atmospheric Conditions," J. Chem. Educ. 76,
793 (1999).

Nylon,PET Fiber
Continuous
Combustion

85129. Muller, J., and G. Dongmann, "Formation of Aromatics during Pyrolysis
of PVC in the Presence of Metal Chlorides," J. Anal. Appl. Pyrolysis 45, 59-
74 (1998).

PVC
Pyrolysis
PAH,PCB Formation
Metal Chloride
Effects

7.  CATALYTIC COMBUSTION

(See also Section 2 for Catalytic Partial Oxidation)

85130. Matros, Y., and V. Strots, eds., "Proceedings of the 3rd International
Conference on Unsteady State Processes in Catalysis," Held in St.
Petersburg, Russia, July 1998, 39 Papers, Chem. Eng. Sci.(Special Issue)
54(20), 4295-4679 (1999).

Catalytic
Processes
Oxidation
Oscillatory/
Unsteady
Behavior

85131. Goralski Jr., C.T., and L.D. Schmidt, "Modeling Heterogeneous and
Homogeneous Reactions in the High Temperature Catalytic Combustion
of Methane," Chem. Eng. Sci. 54, 5791-5807 (1999).

Catalytic
Combustion
CH4 /Air
Homo-/Heterogeneous
Kinetic Model

85132. Arnone, S., G. Busca, L. Lisi, F. Milella, G. Russo and M. Turco,
"Catalytic Combustion of Methane over LaMnO3 Perovskite Supported
on La2O3 Stabilized Alumina: A Comparative Study with Mn3O4 , Mn3O4-
Al2O3 Spinel Oxides," Symp. (Int.) Combust. Proc. 27, 2293-2299 (1998).

Catalytic
Combustion
CH4 /Air
Perovskites
Performance

85133. Lee, J.H., and D.L. Trimm, "Catalytic Combustion of Methane," Fuel
Processing Technol. 42, 339-359 (1995).

Catalytic
Combustion
CH4 /O2 /Pd
Reaction Rates

85134. Kissel-Osterrieder, R., F. Behrendt and J. Warnatz, "Detailed Modeling of
the Oxidation of CO on Platinum: A Monte Carlo Model," Symp. (Int.)
Combust. Proc. 27, 2267-2274 (1998).

Catalytic
Combustion
CO/O2/Pt
Surface Modeling

(85032) Natural Gas/Steam, CO, H2 Syngas Formation Catalytic
Partial Oxidation

(85033) CH4 /CO2 /Catalyst, Synfuel (CO,H2) Formation, Overview Catalytic
Reforming



14
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12.  TURBULENCE

(See also Section 14 for Turbulent Flowfields and Velocities)
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14.  FLOW PHENOMENA/VELOCITIES/DIFFUSION

(See also Section 12 for Turbulent Flowfields)
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38. REACTION PRODUCT-ENERGY DISTRIBUTIONS

(See also Section 37 for Product Distributions)
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